
Selecta Mathematica           (2021) 27:36 
https://doi.org/10.1007/s00029-021-00647-0

SelectaMathematica
New Series

Symplectic resolutions of quiver varieties

Gwyn Bellamy1 · Travis Schedler2

Accepted: 29 November 2020
© The Author(s) 2021

Abstract
In this article, we consider Nakajima quiver varieties from the point of view of
symplectic algebraic geometry. We prove that they are all symplectic singularities in
the sense of Beauville and completely classify which admit symplectic resolutions.
Moreover we show that the smooth locus coincides with the locus of canonically θ -
polystable points, generalizing a result of Le Bruyn; we study their étale local structure
and find their symplectic leaves. An interesting consequence of our results is that not
all symplectic resolutions of quiver varieties appear to come from variation of GIT.

Keywords Symplectic resolution · Quiver variety · Poisson variety

Mathematics Subject Classification 16G20 · 17B63 · 14D25 · 58F05 · 16S80

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 Quiver varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3 Canonical decompositions of the quiver variety . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 Smooth versus stable points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5 The (2, 2) case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6 Factoriality of quiver varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7 Namikawa’s Weyl group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dedicated, with admiration and thanks, to Victor Ginzburg, on the occasion of his 60th Birthday.

B Travis Schedler
trasched@gmail.com

Gwyn Bellamy
gwyn.bellamy@glasgow.ac.uk

1 The Mathematics and Statistics Building, University of Glasgow, University Place, Glasgow G12
8QQ, UK

2 Department of Mathematics, Imperial College London, South Kensington Campus, London SW7
2AZ, UK

0123456789().: V,-vol 

http://crossmark.crossref.org/dialog/?doi=10.1007/s00029-021-00647-0&domain=pdf


   36 Page 2 of 50 G. Bellamy , T. Schedler

1 Introduction

Nakajima’s quiver varieties [46,48], have become ubiquitous throughout representa-
tion theory. For instance, they play a key role in the categorification of representations
ofKac-MoodyLie algebras and the corresponding theory of canonical bases. They pro-
vide étale-local models of singularities appearing in important moduli spaces, together
with, in most cases, a canonical symplectic resolution given by varying the stability
parameter. They give global constructions of certainmoduli spaces, such as resolutions
of du Val singularities [46], Hilbert schemes of points on them [36], and Uhlenbeck
and Gieseker instanton moduli spaces [35,47,49].

Surprisingly, there seems to be no explicit criterion in the literature for when a
quiver variety admits a symplectic resolution; often, in applications, suitable suffi-
cient conditions for their existence are provided, but they do not appear always to
be necessary. The main motivation of this article is to give such an explicit criterion.
Following arguments of Kaledin, Lehn and Sorger (who consider the related case of
moduli spaces of semistable sheaves on a K3 or abelian surface), our classification
applies Drezet’s criteria to show that certain GIT quotients are locally factorial. To do
so we undertake a careful study of the local and global algebraic symplectic geometry
of quiver varieties.

Our classification begins by generalizing Crawley-Boevey’s decomposition theo-
rem [16] of affine quiver varieties into products of such varieties, which we will call
indecomposable, to the non-affine case; i.e., to quiver varieties with nonzero stability
condition (Theorem 1.4). Along the way, we also generalize Le Bruyn’s theorem, [38,
Theorem 3.2], which computes the smooth locus of these varieties, again from the
affine to nonaffine setting (Theorem 1.15).

Then, our main result, Theorem 1.5, states that those quiver varieties admitting
resolutions are exactly those whose indecomposable factors, as above, are one of the
following types of varieties:

(a) Varieties whose dimension vectors are indivisible roots;
(b) Symmetric powers of deformations or partial resolutions of du Val singularities

(C2/� for � < SL2(C));
(c) Varieties whose dimension vector are twice a root whose Cartan pairing with itself

is −2 (i.e., the variety has dimension ten).

Here, a dimension vector α ∈ N
I is called indivisible if gcd(αi ) = 1 for i ∈ I .

The last type (c) is perhaps surprising: it is closely related to O’Grady’s examples
[31,39,55,56]. In this case, one cannot fully resolve or smoothly deform via a quiver
variety, but after maximally smoothing in this way, the remaining singularities are
étale-equivalent to the product of V = C

4 with the locus of square-zero matrices in
sp(V ) (as considered in preceding articles). Via the partial Springer resolution [10],
the latter is resolved by the cotangent bundle of the LagrangianGrassmannian of V . As
explained in [31, Remark 4.6], [39], this resolution can also be obtained by blowing up
the reduced singular locus (once), which makes sense globally on the quiver variety.

In the case of type (a), one can resolve or deform by varying the quiver (GIT)
parameters. In fact, (for λ = 0) it is shown in [5] that all symplectic resolutions can
be realised in this way. On the other hand, for quiver varieties of type (b), one cannot
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resolve in this way, but the variety is well-known to be isomorphic to another quiver
variety (whose quiver is obtained by adding an additional vertex, usually called a
framing, and arrows from it to the other vertices), which does admit a resolution via
varying the parameters. Moreover, in this case, if the stability parameter is chosen
to lie in the appropriate chamber, then the resulting resolution is a punctual Hilbert
scheme of the minimal resolution of the original du Val singularity; see [36]. The
other chambers give in general different resolutions: in fact, thanks to [4], they again
produce all symplectic resolutions of symmetric powers of du Val singularities.

1.1 Symplectic resolutions

In order to state precisely our main results, we will require some notation, which we
will restate in more detail in Sect. 2. Let Q = (Q0, Q1) be a quiver with finitely many
vertices and arrows. We fix a dimension vector α ∈ N

Q0 , deformation parameter
λ ∈ C

Q0 , and stability parameter θ ∈ Z
Q0 , such that λ · α = θ · α = 0. Unless

otherwise stated, we make the following assumption throughout the paper:

If θ �= 0 then λ ∈ R
Q0 . (1)

Nakajima associated to this data the (generally singular) variety, called a “quiver
variety.” We briefly recall the definition; see Sect. 2 for more details. Let Rep(Q, α)

be the vector space of representations of Q of dimension α. The group G(α) :=∏
i∈Q0

GLαi (C) acts on Rep(Q, α); write g(α) = Lie G(α). Then G(α) also acts on

T ∗ Rep(Q, α) ∼= Rep(Q, α)with amomentmapμ : T ∗ Rep(Q, α)→ g(α)∗ ∼= g(α);
here Q is the doubled quiver, obtained by adding reverse arrows to Q. To λ ∈ C

Q0

we can associate (λ Idi )i∈Q0 ∈ g(α). By abuse of notation we will consider C
Q0

to be a subset of g(α) in this way and write μ−1(λ) for the fiber over (λ Idi )i∈Q0 .
Let μ−1(λ)θ ⊆ μ−1(λ) be the θ -semistable locus; this is the locus corresponding
to representations of Q such that the dimension vector β of every subrepresentation
satisfies θ · β ≤ 0. Then Nakajima defined the variety Mλ(α, θ) as:

Mλ(α, θ) := μ−1(λ)θ//G(α).

It does not seem to be known whether Mλ(α, θ), equipped with its natural scheme
structure, is reduced (though we expect it is the case). Therefore, following Crawley-
Boevey [17], we will consider throughout the paper all quiver varieties as reduced
schemes.

Remark 1.1 The construction in [46,48] is apparently more general, depending on an
additional dimension vector, called the framing. However, as observed by Crawley-
Boevey [15], every framed variety can be identified with an unframed one. In more
detail, for the variety as in [46,48] with framing β ∈ N

Q0 , it is observed in [15,
Section 1] that the resulting variety can alternatively be constructed by replacing Q
by the new quiver (Q0 ∪ {∞}, Q̃1), where Q̃1 consists of Q1 together with, for every
i ∈ Q0, βi new arrows from∞ to i ; then Nakajima’s β-framed variety is the same as
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M(λ,0)((α, 1), (θ,−α · θ)). Thus, for the purposes of the questions addressed in this
article, it is sufficient to consider the unframed varieties.

Let R+λ,θ denote those positive roots of Q that pair to zero with both λ and θ . If

α /∈ NR+λ,θ then Mλ(α, θ) = ∅, therefore we assume α ∈ NR+λ,θ . As defined by
Beauville [2], a normal variety X is said to be a symplectic singularity if there exists
an (algebraic) symplectic 2-form ω on the smooth locus of X such that π∗ω extends
to a regular 2-form on the whole of Y , for any resolution of singularities π : Y → X .
We say that π is a symplectic resolution if π∗ω extends to a non-degenerate 2-form
on Y . Note that a symplectic resolution does not always exist, and when it does exist,
it is not always unique.

Theorem 1.2 The variety Mλ(α, θ) is an irreducible symplectic singularity.

This theorem is important because symplectic singularities have become important
in representation theory: on the one hand they include many of the most important
examples (aside from quiver varieties, they include linear quotient singularities, nilpo-
tent cones, orbit closures, Slodowy slices, hypertoric varieties, and so on), and on the
other hand they exhibit important properties, at least in the conical case, such as the
existence of a nice universal family of deformations [33,51,52] and of quantizations
[8,11,40].

From both the representation theoretic and the geometric point of view, it is impor-
tant to know when the varietyMλ(α, θ) admits a symplectic resolution. In this article,
we address this question, giving a complete answer. The first step is to reduce to the
case where α is a root for which there exists a θ -stable point inμ−1(λ). This is done via
the canonical decomposition of α, as described by Crawley-Boevey; it is analogous to
Kac’s canonical decomposition. In this article, the term canonical decomposition will
only refer to the former, which we now recall. Associated to λ, θ is a combinatorially
defined set	λ,θ ⊂ R+λ,θ ; see Sect. 2 below. Then α admits a canonical decomposition

α = n1σ
(1) + · · · + nkσ

(k) (2)

with σ (i) ∈ 	λ,θ pairwise distinct, such that any other decomposition of α into a
sum of roots belonging to 	λ,θ is a refinement of the decomposition (2). Closed
points inμ−1(λ) correspond to representations of the so-called deformed preprojective
algebra �λ(Q); see Sect. 2.1 for details. Then points of Mλ(α, θ) are in bijection
with isomorphism classes of θ -polystable representations of �λ(Q) (equivalently,
representations of the doubled quiver of moment λwhich decompose as direct sums of
θ -stable representations) of dimension α. Generalizing [15, Theorem 1.2], Proposition
3.18 implies

Theorem 1.3 There exists a θ -stable representation of the deformed preprojective
algebra �λ(Q) of dimension α if and only if α ∈ 	λ,θ .

Crawley-Boevey’s Decomposition Theorem [16], which we will show holds in
somewhat greater generality, then implies that the canonical decomposition gives a
decomposition of the quiver variety as a product of varieties for each of the summands
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(the first statement of the next theorem). We show that the question of existence of
symplectic resolutions ofMλ(α, θ) can be reduced to the analogous question for each
factor.

Theorem 1.4 With respect to the canonical decomposition (2):

(a) The symplectic variety Mλ(α, θ) is isomorphic to Sn1Mλ(σ
(1), θ) × · · · ×

SnkMλ(σ
(k), θ).

(b) Mλ(α, θ) admits a projective symplectic resolution if and only if eachMλ(σ
(i), θ)

admits a projective symplectic resolution.

Here Sn X denotes the nth symmetric product of X .
To finish the classification, it suffices to describe the case α ∈ 	λ,θ . Write gcd(α)

for the greatest common divisor of the integers {αi }i∈Q0 ; it is divisible if gcd(α) > 1,
and otherwise indivisible. Let p(α) := 1− 1

2 (α, α)where (−,−) is the Cartan pairing
associated to the undirected graph underlying the quiver, i.e., (ei , e j ) = 2 − |{a ∈
Q1 | a : i → j or a : j → i}|, for elementary vectors ei , e j . As we will show below
(in Corollary 3.24), 2p(α) = dimMλ(α, θ). Finally, as we will recall in Sect. 2,
elements α ∈ 	λ,θ are divided into real roots (when p(α) = 0) and imaginary roots
(when p(α) > 0). The case p(α) = 1 is particularly important and called isotropic,
since it means (α, α) = 0. When p(α) > 0 we say that α is anisotropic. Note that,
when σ (i) is anisotropic in the canonical decomposition (2), then ni = 1 (see Corollary
2.3 below).

Our main theorem is then:

Theorem 1.5 Let α ∈ 	λ,θ . ThenMλ(α, θ) admits a projective symplectic resolution
if and only if α is indivisible or

(
gcd(α), p

(
gcd(α)−1α

)) = (2, 2).

The latter case in the theorem will be referred to as “the (2, 2) case”.
If α ∈ 	λ,θ is indivisible and anisotropic, then a projective symplectic resolution

ofMλ(α, θ) is given by moving θ to a generic stability parameter. However, this fails
in the (2, 2) case. It seems unlikely that Mλ(α, θ) can be resolved by another quiver
variety in this case. Instead, we show that the 10-dimensional symplectic singularity
Mλ(α, θ) can be resolved by blowing up the singular locus. We will need the partial
ordering≥ on stability conditions, where θ ′ ≥ θ if every θ ′-semistable representation
is θ -semistable; see Sect. 2.4 below.

Theorem 1.6 Let α ∈ 	λ,θ , and suppose
(
gcd(α), p

(
gcd(α)−1α

)) = (2, 2). Let θ ′
be a generic stability parameter such that θ ′ ≥ θ .

If M̃λ(α, θ ′) is the blowup ofMλ(α, θ ′) along the reduced singular locus, then the
canonical morphism π : M̃λ(α, θ ′)→Mλ(α, θ) is a projective symplectic resolution
of singularities.

In most cases where a projective symplectic resolution does not exist, we can prove
that neither does a proper one exist (note that every projective resolution is proper but
not conversely). We say that α ∈ 	λ,θ is “	-divisible” if α = mβ for m ≥ 2 and
β ∈ 	λ,θ . This is a slightly stronger condition than being divisible, although they
coincide in most cases: see Theorem 2.2 below.
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Theorem 1.7 If α ∈ 	λ,θ is 	-divisible, and
(
gcd(α), p

(
gcd(α)−1α

)) �= (2, 2), then
Mλ(α, θ) does not admit a proper symplectic resolution.

Moreover, for generalα ∈ N
Q0 , if there exists a	-divisible factorσ (i) in the decom-

position (2) that satisfies
(
gcd(σ (i)), p

(
gcd(σ (i))−1σ (i)

)) �= (2, 2), then Mλ(α, θ)

does not admit a proper symplectic resolution.

Remark 1.8 Most of the literature deals with projective rather than proper resolutions.
However, there are interesting examples of proper symplectic resolutions that are not
projective. For example, in [1] such examples are constructed admitting Hamiltonian
torus actions of maximal dimension (this condition is called hypertoric there, which
generalizes the usual definition of hypertoric variety).

It seems to be an interesting question if, whenever a proper symplectic resolution
exists, also a projective symplectic resolution exists. More generally, it seems rea-
sonable to ask whether, if a proper symplectic resolution exists, then every proper
Q-factorial terminalization is symplectic; if we restrict to projective resolutions and
terminalizations, then the proof of [52, Theorem 5.5] shows that this holds at least
when the singularity is conical with homogeneous generic symplectic form.

1.2 Symplectic leaves and the étale local structure

AsHamiltonian reductions, quiver varieties have a natural Poisson structure. The sym-
plectic leaves of this Poisson structure are the maximal connected (analytic immersed)
submanifolds on which the Poisson bracket is non-degenerate. Put differently, the
reduction naturally is foliated by symplectic submanifolds. For example, the locus
of stable representations of the doubled quiver inside μ−1(λ) consists of free closed
orbits under the group PG(α) := G(α)/C

×, hence its Hamiltonian reduction here is
well known to be symplectic. If nonempty, this forms an open dense symplectic leaf
of the quiver variety.

Since we have shown that quiver varieties have symplectic singularities, thanks to
[30, Theorem 2.3], they must necessarily be a finite union of symplectic leaves and
the latter are algebraic. It has long been assumed that the leaves are precisely the strata
Mλ(α, θ)τ given by the representation-type stratification. Here τ is a decomposition
of α in 	λ,θ . Since this explicit identification of the symplectic leaves is crucial later
in the article, we provide a complete proof that this is indeed the case.

Theorem 1.9 The symplectic leaves of Mλ(α, θ) are the representation-type strata
Mλ(α, θ)τ .

This result follows from Proposition 3.15 and Corollary 3.25. The classification
of symplectic leaves already appears in [43], however there seems to be a gap in the
proof given there; see remark 3.26.

Theorem 1.9 allows us to give a combinatorial classification, in Corollary 1.17
below, of those quiver varieties that are smooth.

An important tool in both the proof of Theorem 1.9 and later results on the facto-
riality of quiver varieties is an étale local description of the varieties. In the case of
trivial stability parameter θ = 0, this étale local picture was described by Crawley-
Boevey in [17], where it was used to prove that those quiver varieties are normal. In
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Sect. 3.2 we show that this étale local description holds for all stability parameters.
See Theorem 3.3 for the precise statement.

A relative version of Theorem 3.3, proving an étale local description of the
morphism M(α, θ) → M(α, θ ′) is given in [4]. This result allows the authors to
completely classify (in the case of a framed affine Dynkin quiver) those walls in the
space of stability parameters that are flops; resp. are divisorial contractions. This is a
key step in showing (as mentioned above) that all symplectic resolutions of symmetric
powers of du Val singularities are given by variation of GIT.

1.3 Factoriality of quiver varieties

The real difficulty in the proof of Theorem 1.5 is in showing that if α ∈ 	λ,θ is
divisible and anisotropic,

(
gcd(α), p

(
gcd(α)−1α

))
�= (2, 2), (3)

thenMλ(α, θ) does not admit a projective symplectic resolution. Based upon a result
of Drezet [19], who considered instead the moduli space of semistable sheaves on a
rational surface, we show in Corollary 6.9 the following result. Recall that a variety
is locally factorial if all of its local rings are unique factorization domains.

Theorem 1.10 Assume that α ∈ 	λ,θ is an anisotropic root satisfying condition (3),
and that θ is generic. Then the quiver variety Mλ(α, θ) is locally factorial.

Observe that we did not require α to be divisible, although if were indivisible then we
already noted thatMλ(α, θ) is smooth for generic θ . On the other hand, in the divisible
case, we will see that, for θ generic, the variety Mλ(α, θ) has terminal singularities,
using that, by [50], this is equivalent to having singularities in codimension at least
four. Therefore, by a well-known fact, the above theorem implies that it cannot admit
a proper symplectic resolution.

In fact, we prove inCorollary 6.9 amore precise statement thanTheorem1.10which
does not require that θ be generic. By the argument given in the proof of Theorem
6.13, we see that the corollary implies that this statement holds for open subsets of
Mλ(α, θ). Therefore we conclude the following strengthening of the nonexistence
direction of Theorem 1.5:

Corollary 1.11 Assume that α ∈ 	λ,θ is divisible, it satisfies condition (3), and θ is
generic. Under the assumptions of Theorem 1.10, if U ⊆ Mλ(α, θ) is any singular
Zariski open subset, then U does not admit a proper symplectic resolution.

In fact, by Corollary 6.9 below, we can drop in Corollary 1.11 the assumption that θ is
generic, at the price of replacing Mλ(α, θ) by a certain canonical open set: the locus
of direct sums of stable representations of dimension vector proportional to α.

In particular, in many cases, there are open subsetsU ⊆Mλ(α, θ) which formally
locally admit symplectic resolutions everywhere, but do not admit one globally. For
example, if α = 2β for some β ∈ 	λ,θ with p(β) ≥ 3 (cf. the definition of p above
Theorem 1.5), then we can letU be the locus of representations which are either stable
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or decompose as X = Y ⊕ Y ′ for Y ,Y ′ nonisomorphic θ -stable representations of
dimension vectors equal to β.

There is one quiver variety in particular that captures the “unresolvable” singular-
ities of Mλ(α, θ). This variety, which we denote X(g, n) with g, n ∈ N, has been
studied in the works of Lehn, Kaledin and Sorger. Concretely,

X(g, n) :=
{

(X1,Y1, . . . , Xg,Yg) ∈ EndC(Cn)

∣
∣
∣
∣
∣

d∑

i=1
[Xi ,Yi ] = 0

}

//GL(n, C),

Viewed as a special case of Corollary 6.9, we see thatX(g, n) does not admit a proper
symplectic resolution if g, n ≥ 2 and (g, n) �= (2, 2).

When g = 1, the Hilbert scheme of n points in the plane provides a symplectic
resolution of X(g, n) � SnC2; see [23, Theorem 1.2.1, Lemma 2.8.3]. When n = 1,
one has X(g, n) � C

2g .

Remark 1.12 It is interesting to note that [15, Theorem 1.1] implies that the moment
map

(X1,Y1, . . . , Xg,Yg) �→
g∑

i=1
[Xi ,Yi ]

is flat when g > 1, in contrast to the case g = 1, which is easily seen not to be flat.

Remark 1.13 Generalizing the Geiseker moduli spaces that arise from framings of the
Jordan quiver, it seems likely that the framed versions ofX(g, n), which are smooth for
generic stability parameters, should have interesting combinatorial and representation
theoretic properties.

Remark 1.14 One does not need the full strength of Theorem 1.10 to prove that
Mλ(α, θ) does not admit a symplectic resolution: it suffices to show that a formal
neighborhood of some point does not admit a symplectic resolution. This reduces the
problem to the one-vertex case, i.e., to X(g, n). However, the techniques (following
[32]) do not actually simplify in this case. Moreover, this would not be enough to
imply Corollary 1.11.

1.4 Smooth versus canonically polystable points

In order to decide when the varietyMλ(α, θ) is smooth, we describe the smooth locus
in terms of θ -stable representations.Write the canonical decomposition n1σ (1)+· · ·+
nkσ (k) of α ∈ NR+λ,θ as β(1)+· · ·+β(
), where a given β ∈ 	λ,θ may appear multiple
times. Recall that a representation is said to be θ -polystable if it is a direct sum of
θ -stable representations. We say that a representation x is canonically θ -polystable
if x = x1 ⊕ · · · ⊕ x
 where each xi is θ -stable, dim xi = β(i) and xi �� x j for
i �= j , unless β(i) = β( j) is a real root, i.e., p(β(i)) = 0. Observe that the notion of
canonical θ -polystability reduces to θ -stability precisely in the case that α ∈ 	λ,θ . In



Symplectic resolutions of quiver varieties Page 9 of 50    36 

general, the set of points ofMλ(α, θ)which are the image of canonically θ -polystable
representations is a dense open subset. When θ = 0, the result below is due to Le
Bruyn [38, Theorem 3.2] (whose arguments we generalize).

Theorem 1.15 A point x ∈ Mλ(α, θ) belongs to the smooth locus if and only if it is
canonically θ -polystable.

Remark 1.16 Theorem 1.15 confirms the expectation stated after Lemma 4.4 of [25].

An element σ ∈ 	λ,θ is said to be minimal if there are no β(1), . . . , β(r) ∈ 	λ,θ ,
with r ≥ 2, such that σ = β(1) + · · · + β(r).

Corollary 1.17 The varietyMλ(α, θ) is smooth if, and only if, in the canonical decom-
position α = n1σ (1)+ · · · + nkσ (k) of α, each σ (i) is minimal, and the multiplicity ni
is one if σ (i) is isotropic.

Since, as recalled in Corollary 2.3 below, ni is always one if σ (i) is aniostropic, we
could equivalently drop the assumption “is isotropic” at the end of the corollary.

Corollary 1.17 is a crucial ingredient in the proof of the main result of [4], where a
key step is the classification of stability parameters for which the corresponding quiver
variety (associate to a framed affine Dynkin quiver) is smooth.

1.5 Namikawa’sWeyl group

When both λ and θ are zero,M0(α, 0) is an affine conic symplectic singularity. Asso-
ciated to M0(α, 0) is Namikawa’s Weyl group W [51], a finite reflection group. In
order to compute W , one needs to describe the codimension two symplectic leaves
of M0(α, 0). More generally, we consider the codimension two leaves in a general
quiver varietyMλ(α, θ). It is enough by Crawley–Boevey’s canonical decomposition
to consider the case α ∈ 	λ,θ . We show that the codimension two symplectic leaves
are parameterized by isotropic decompositions of α.

Definition 1.18 The decomposition α = β(1) + · · · + β(s) + m1γ
(1) + · · ·mtγ

(t) is
said to be an isotropic decomposition if

(a) β(i), γ ( j) ∈ 	λ,θ .
(b) The β(i) are imaginary roots.
(c) The γ (i) are pairwise distinct real roots.
(d) If Q

′′
is the quiver with s+ t vertices without loops and−(α(i), α( j)) arrows from

vertex i to vertex j �= i , where α(i), α( j) ∈ {β(1), . . . , β(s), γ (1), . . . , γ (t)}, then
Q′′ is an affine Dynkin quiver.

(e) The dimension vector (1, . . . , 1,m1, . . . ,mt )of Q′′ (where there are s ones) equals
δ, the minimal imaginary root.

Remark 1.19 In fact, as we will show in Lemma 7.2 below, in an isotropic decompo-
sition of α ∈ 	λ,θ , all of the anisotropic β(i) are pairwise distinct. This may help in
finding these decompositions.

However, the isotropic β(i) need not be distinct. As an example, when Q is the
quiver with two vertices 1, 2 and two arrows, one loop at 1 and one arrow from 1 to 2,
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then we can take α = (4, 2), β(1) = (1, 0) = β(2) = β(3) = β(4), and γ (1) = (0, 1).
Then p(α) = 5 andα ∈ 	0,0, and the quiver Q

′′
is of affine D4 typewith central vertex

corresponding to γ (1) and external vertices corresponding to the β(i). This example is
also interesting since α ∈ 	0,0 is divisible, but not 	-divisible (as 1

2α /∈ 	0,0).

Given an isotropic decomposition with affine Dynkin quiver Q′′, let Q′′f be the finite
part, which is a Dynkin diagram.

Theorem 1.20 Let α ∈ 	λ,θ be imaginary. Then the codimension two strata of
Mλ(α, θ) are in bijectionwith the isotropic decompositions ofα. The singularity along
each such stratum is étale-equivalent to the du Val singularity of the type An, Dn, En

corresponding to Q′′f .

As a consequence, for λ = 0 = θ , by [51, Theorem 1.1] the Namikawa Weyl group
is a product over all isotropic decompositions B of a group WB . This group WB is
either theWeyl group of the corresponding Dynkin diagram Q′′f , or else the centralizer
therein of an automorphism of this diagram, corresponding to the monodromy around
the fiber over a point of the stratum under a crepant resolution of the complement of
the codimension > 2 strata.

1.6 Character varieties

Themethodswe use seem to be applicable tomany other situations. Indeed, as we have
noted previously, they were first developed by Kaledin–Lehn–Sorger in the context
of semistable sheaves on a K3 or abelian surface. Any situation where the symplectic
singularity is constructed as a Hamiltonian reduction with respect to a reductive group
of type A is amenable to this sort of analysis. One such situation, which is of crucial
importance throughout geometry, topology, and group theory, is that of character
varieties of a Riemannian surface.

Let 	 be a compact Riemannian surface of genus g > 0 and π its fundamental
group. The SL-character variety of 	 is the affine quotient

Y(g, n) := Hom(π,SL(n, C))//SL(n, C).

Similarly, the GL-character variety is

X(g, n) = Hom(π,GL(n, C))//GL(n, C).

In the article [7] we show that X(g, n) and Y(g, n) are irreducible symplectic singu-
larities. Moreover, we show:

Theorem 1.21 [7] Assume that g > 1 and (g, n) �= (2, 2). Then the varieties X(g, n)

and Y(g, n) are locally factorial with terminal singularities and hence do not admit
proper symplectic resolutions. The same holds for any singular open subset.

Another very similar situation is that of moduli spaces of Higgs bundles on a genus
g curve. The symplectic singularities of these moduli spaces are considered by A.
Tirelli in [60].
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1.7 Applications

In joint work with A. Craw, the first author studies the symplectic resolutions of
the symplectic quotient singularities C

2n/(Sn � �), where � ⊂ SL(2, C) is a finite
group and Sn � � = �n

� Sn is the associated wreath product. It is well-known that
C
2n/(Sn ��) is a quiver variety and symplectic resolutions of the quotient singularity

can be realised using variation of GIT for quiver varieties. Using the results from this
article, it is shown in [4] that in fact all projective symplectic resolutions of the quotient
singularity can be realised using quiver varieties. Moreover, one can say when stability
parameters lying in different chambers give rise to the same symplectic resolutions. To
prove these statements, it is crucial to have (a) the characterization of smooth quiver
varieties given by Corollary 1.17 (b) the classification of symplectic leaves given in
Corollary 3.25; and (c) the local normal form given by Theorem 3.3.

More generally, in joint work [5] with A. Craw, we use results of this paper to give
a complete classification of Q-factorial terminalizations of quiver varieties.

In [13], the authors prove that symmetric powers of minimal resolutions of du Val
singularities are also quiver varieties, for non-generic stability parameters on affine
Dynkin quivers. By Theorem 1.2, this implies that they are symplectic singularities.
Our results in Sect. 3.4 are also employed in the proof of their main result.

1.8 Other related work

In joint work [58] with Tirelli, the second author has used similar methods to give a
classification of those multiplicative quiver varieties and character varieties of open
Riemann surfaces that admit symplectic resolutions. Though the methods are similar,
the situation considered in [58] is considerably more complex that the additive case
considered here (owing, for example, to the fact that it is unknown there when the
varieties in question are nonempty).

Our classification explains which quiver varieties fall under the general framework
of Springer theory as recently developed byMcGerty–Nevins [44]. Additionally, sim-
ilar questions to ours are analyzed there in greater detail for the Dynkin cases.

1.9 Notation and proof of themain results

Throughout, a variety will mean a reduced, quasi-projective scheme of finite type over
C. If X is a (quasi-projective) variety equipped with the action of a reductive algebraic
group G, then X//G will denote the good quotient (when it exists). In this case, let
ξ : X → X//G denote the quotient map. Then each fibre ξ−1(x) contains a unique
closed G-orbit. Following Luna, this closed orbit is denoted T (x).

The proof of the theorems and corollaries stated in the introduction can be found
in the following sections.

2 Quiver varieties

In this section we fix notation.
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Theorem 1.2 : Section 6.3
Theorem 1.4 : Section 6.4
Theorem 1.5 : Section 6.4
Theorem 1.6 : Section 5.2
Theorem 1.10 : Section 6.2
Corollary 1.11 : Section 6.4
Theorem 1.15 : Section 4.2
Corollary 1.17 : Section 4.3
Theorem 1.20 : Section 7.1

2.1 Notation

Let N := Z≥0. We work over C throughout. All quivers considered will have a
finite number of vertices and arrows. We allow Q to have loops at vertices. Let
Q = (Q0, Q1) be a quiver, where Q0 denotes the set of vertices and Q1 denotes the set
of arrows. Given a ∈ Q1, let as, at ∈ Q0 be the source and target, so a : as → at . For a
dimension vector α ∈ N

Q0 , Rep(Q, α) :=∏
a∈Q1

Hom(Cαas , C
αat ) denotes the vec-

tor space of representations of Q of dimension α. The groupG(α) :=∏
i∈Q0

GLαi (C)

acts on Rep(Q, α); write g(α) = Lie G(α). The torusC
× in G(α) of diagonal matrices

acts trivially on Rep(Q, α). Thus, the action factors through PG(α) := G(α)/C
×. Let

pg(α) := Lie PG(α) = g(α)/C.
Let Q be the doubled quiver of Q, where for each arrow a : i → j of Q we add a

reverse arrow a∗ : j → i to form Q. There is a natural identification T ∗ Rep(Q, α) =
Rep(Q, α). The group G(α) acts symplectically on Rep(Q, α) and the corresponding
moment map is μ : Rep(Q, α)→ g(α), where we have identified g(α) with its dual
using the trace form. An element λ ∈ C

Q0 is identifiedwith the tuple of scalar matrices
(λi IdVi )i∈Q0 ∈ g(α). The affine quotient μ−1(λ)//G(α) parameterizes semi-simple
representations of the deformed preprojective algebra�λ(Q) := CQ/(

∑
a∈Q1

(aa∗−
a∗a) −∑

i∈Q0
λi pi ), where pi is the length-zero path at the vertex i . See [15] for

details.
If M is a finite dimensional �λ(Q)-module, then dim M will always denote the

dimension vector of M , and not just its total dimension.

2.2 Root systems

The coordinate vector at vertex i is denoted ei . The set N
Q0 of dimension vectors is

partially ordered by α ≥ β if αi ≥ βi for all i and we say that α > β if α ≥ β with
α �= β. The support of the vector α is the subquiver of Q obtained by deleting all
vertices i ∈ Q0 where αi = 0. Following [17, Section 8], α is called sincere if αi > 0
for all i i.e. the support of α equals Q. The Ringel form on Z

Q0 is defined by

〈α, β〉 =
∑

i∈Q0

αiβi −
∑

a∈Q1

αt(a)βh(a).
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Let (α, β) = 〈α, β〉 + 〈β, α〉 denote the corresponding Euler form and set p(α) =
1− 〈α, α〉. The fundamental region F(Q) is the set of 0 �= α ∈ N

Q0 with connected
support and with (α, ei ) ≤ 0 for all i .

If i is a loopfree vertex, so p(ei ) = 0, there is a reflection si : ZQ0 → Z
Q0 defined

by siα = α − (α, ei )ei . There is also the dual reflection, ri : ZQ0 → Z
Q0 , (riλ) j =

λ j − (ei , e j )λi . The real roots (respectively with imaginary roots) are the elements of
Z
Q0 which can be obtained from the coordinate vector at a loopfree vertex (respectively
± an element of the fundamental region) by applying some sequence of reflections
at loopfree vertices. Let R+ denote the set of positive roots. Recall that a root β

is isotropic imaginary if p(β) = 1 (i.e., (β, β) = 0) and anisotropic imaginary if
p(β) > 1. Abusing terminology slightly, we will simply say that a root α is (a) real if
p(α) = 0, (b) isotropic if p(α) = 1, and (c) anisotropic if p(α) > 1.

2.3 The canonical decomposition

In this section we recall the canonical decomposition defined by Crawley-Boevey (not
to be confused with Kac’s canonical decomposition). Fix λ ∈ C

Q0 and θ ∈ Z
Q0 . Then

R+λ,θ := {α ∈ R+ | λ · α = θ · α = 0}. Following [15], we define

	λ,θ =
{

α ∈ R+λ,θ

∣
∣
∣
∣
∣
p(α) >

r∑

i=1
p

(
β(i)

)
for any decomposition

α = β(1) + · · · + β(r) with r ≥ 2, β(i) ∈ R+λ,θ

}
.

Example 1 Suppose that λ = 0 = θ and α ∈ 	λ,θ is real, i.e., p(α) = 0. Then α is
a coordinate vector. Indeed, if not, by definition there is a vertex i ∈ Q0 such that
α = siα + kei with k ≥ 1. Then 0 = p(α) = p(siα) + kp(ei ) contradicts the fact
that α ∈ 	0,0.

Example 2 Again suppose that λ = 0 = θ , and now assume that α ∈ 	λ,θ is isotropic
i.e., p(α) = 1. Then as observed in the proof of [16, Proposition 1.2.(2)],α is supported
on an affine Dynkin subquiver and there is the minimal imaginary root. We repeat the
argument for the reader’s convenience. First, α is indivisible, since α = kβ would
imply p(α) < kp(β), and as β is also a root, this contradicts the assumption α ∈ 	0,0.
Next, α is in the fundamental region, since otherwise α = siα + kei for some i ∈ Q0
and k ≥ 1, which implies 1 = p(α) = p(siα) + kp(ei ), again contradicting the
assumption that α ∈ 	0,0. Now the support of α is connected. Letting Q′ be its
supporting quiver (i.e., the result of discarding all vertices not in the support and all
incident arrows), we obtain a connected quiver forwhichα is in the kernel of theCartan
pairing. By [28, Lemma 1.9.(d)], Q′ is affine (ADE) Dynkin and α is an imaginary
root. Since it is also indivisible, it is the minimal imaginary root δ of Q′.

In several places below, we choose a parameter ν ∈ C
Q0 such that R+λ,θ = R+ν so

that we can apply results of [16], where the case θ = 0 is considered. This is only



   36 Page 14 of 50 G. Bellamy , T. Schedler

for convenience, since the arguments of [16] can also be generalized directly to the
context of the pair (θ, λ). Then [16, Theorem 1.1] implies that

Proposition 2.1 Let α ∈ NR+λ,θ . Then α admits a unique decomposition α = n1σ (1)+
· · · + nkσ (k) as a sum of element σ (i) ∈ 	λ,θ such that any other decomposition of α
as a sum of elements from 	λ,θ is a refinement of this decomposition.

As is apparent from the results stated in the introduction, indivisible roots in 	λ,θ

play an important role in this paper. Occasionally it is useful to compare this with the
condition of being 	-indivisible, i.e., being indivisible in 	λ,θ :

Theorem 2.2 If α ∈ 	λ,θ is imaginary, with α = mβ for some indivisible root β, then
one of the following hold:

(a) β is isotropic and m = 1,
(b) β is anisotropic and β ∈ 	λ,θ ; or
(c) β is anisotropic, β /∈ 	λ,θ and m > 1 can be chosen arbitrarily.

The following converse to (b) holds: if β ∈ 	λ,θ is anisotropic, then mβ ∈ 	λ,θ for
all m ≥ 1.

Proof Once again, choose once again ν ∈ C
Q0 such that R+λ,θ = R+ν and letFν be the

“relative fundamental domain”, as defined in [15, §7]. Then Theorem 2.2 follows from
[15, Theorem 8.1] provided that α ∈ Fλ,θ . Namely, there it is described precisely the
setFν \	ν , which has a very special form, called types (I), (II), and (III). Type (I) is the
isotropic case: namely the multiples by positive integers m ≥ 2 of the imaginary root
of an affine Dynkin subquiver. They are divisible. Types (II) and (III) are indivisible,
and anisotropic.

If α is not in Fν then, by definition, there is a sequence of admissible reflections
(whose product is w say) mapping α to w(α) ∈ Fw(ν) (where w(ν) uses the action
of dual reflections rather than reflections). Moreover, by [15, Lemma 5.2], w(α) also
belongs to 	w(ν). Thus, it suffices to note that if trichotomy of the theorem holds for
w(α), then it also holds for the root α.

The final statement follows from [16, Proposition 1.2 (3)]. For the convenience of
the reader we recall the proof, since it is closely related to the above.

As we mentioned, the anisotropic cases (II) and (III) mentioned above are both
indivisible. Thus every divisible anisotropic element of Fν is in 	ν . So the above
reductions imply the statement. ��

Corollary 2.3 In the canonical decomposition (2), ni = 1 if σ (i) is anisotropic.

Proof This follows immediately from the final statement of Theorem 2.2, by the def-
inition of the canonical decomposition. ��

Notice that Theorem 2.2 says that if β is an indivisible anisotropic root such that
some multiple of β belongs to 	λ,θ , then every proper multiple of β belongs to 	λ,θ .
However, in some cases β itself need not belong to 	λ,θ .
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2.4 Stability

Let θ ∈ Z
Q0 be a stability condition. Given a representation M of Q (e.g., a module

over �λ(Q)), let θ(M) := θ · dim M . Note that a representation M of �λ(Q) is
the same as a point in the zero fiber μ−1(λ). Recall that a �λ(Q)-representation M
(hence also a point in μ−1(λ)) such that θ(M) = 0, is said to be θ -stable, respectively
θ -semistable, if θ(M ′) < 0, respectively θ(M ′) ≤ 0, for all proper nonzero subrepre-
sentationsM ′ ofM .A representationM is said to be θ -polystable ifM = M1⊕· · ·⊕Mk

with θ(Mi ) = 0, such that each Mi is θ -stable. The set of θ -semistable points in
μ−1(λ) is denoted μ−1(λ)θ . We define a partial order on Z

Q0 by setting θ ′ ≥ θ if M
θ ′-semistable implies that M is θ -semistable, i.e.,

θ ′ ≥ θ ⇐⇒ μ−1(λ)θ
′ ⊂ μ−1(λ)θ .

The space Rep(Q, α) has a natural Poisson structure. Since the action of G(α) on
Rep(Q, α) is Hamiltonian,

Mλ(α, θ) = μ−1(λ)θ//G(α) := Proj
⊕

k≥0
C

[
μ−1(λ)

]kθ

is a Poisson variety.

Lemma 2.4 If θ ′ ≥ θ , then there is a projective Poisson morphism Mλ(α, θ ′) →
Mλ(α, θ).

Proof By definition, we have a G(α)-equivariant embedding μ−1(λ)θ
′
↪→ μ−1(λ)θ .

This induces a morphism

Mλ(α, θ ′) = μ−1(λ)θ
′
//G(α) −→ μ−1(λ)θ//G(α) =Mλ(α, θ),

between geometric quotients. We need to show that this morphism is projective. This
is local on Mλ(α, θ). Therefore we may choose n � 0 and a nθ -semi-invariant f
and consider the open subsets U ∩ μ−1(λ)θ

′
and U ∩ μ−1(λ)θ , where U = ( f �=

0) ⊂ Rep(Q, α). Then
(
U ∩ μ−1(λ)θ

)
//G(α) = SpecC

[
U ∩ μ−1(λ)

]G(α)
is an

open subset of Mλ(α, θ) and

(
U ∩ μ−1(λ)θ

′)
//G(α) = Proj

⊕

k≥0
C

[
U ∩ μ−1(λ)

]kθ ′

such that
(
U ∩ μ−1(λ)θ

′)
//G(α) → (

U ∩ μ−1(λ)
)
//G(α) is the projective mor-

phism

Proj
⊕

k≥0
C

[
U ∩ μ−1(λ)

]kθ ′ −→ SpecC

[
U ∩ μ−1(λ)

]G(α)

.
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It is clear that this morphism is Poisson. ��
It follows from the proof of Lemma 2.4 that if θ ′′ ≥ θ ′ ≥ θ then the projective

morphismMλ(α, θ ′′)→Mλ(α, θ) factors through Mλ(α, θ ′).
We will frequently use the fact that for each point x ∈Mλ(α, θ), there is a unique

closed G(α)-orbit in the fibre over x of the quotient map ξ : μ−1(λ)θ → Mλ(α, θ).
Recall that this closed orbit is denoted T (x).

3 Canonical decompositions of the quiver variety

In this section we recall the canonical decomposition of quiver varieties described in
[16], and show that it holds in slightly greater generality than stated there.

3.1 A stratification

Let x ∈Mλ(α, θ) be a closed point and y ∈ T (x). Recall the following basic fact:

Proposition 3.1 [34, Proposition 3.2 (i)] A point of a closed G(α)-orbit in μ−1(λ)θ

is a θ -polystable representation.

In more detail, [34, Proposition 3.2 (ii)] states that two points of μ−1(λ)θ determine
the same point of Mλ(α, θ) if and only if the corresponding representations admit
filtrations whose associated graded subquotients are isomorphic θ -polystable repre-
sentations.

Therefore y decomposes into a direct sum ye11 ⊕· · ·⊕yekk of θ -stable representations,
with multiplicity. Let β(i) = dim yi . The point x is said to have representation type
τ = (e1, β(1); . . . ; ek, β(k)). Associated to this is the stabilizer group Gτ = G(α)y ,
which is independent of the choice of y up to conjugation in G(α). Even though
μ−1(λ)θ is not generally affine, the fact that a nonzero morphism between θ -stable
representations is an isomorphism implies:

Lemma 3.2 The group Gτ is reductive.

In fact, it is isomorphic to
∏k

i=1 GLei (C).We denote the conjugacy class of a closed
subgroup H of G(α) by (H). Given a reductive subgroup H of G(α), letMλ(α, θ)(H)

denote the set of points x such that the stabilizer of any y ∈ T (x) belongs to (H). We
order the conjugacy classes of reductive subgroups of G(α) by (H) ≤ (L) if and only
if L is conjugate to a subgroup of H .

3.2 Étale local structure

In this section, we recall the étale local structure of Mλ(α, θ), as described in
[17, Section 4]. Since it is assumed in op. cit. that θ = 0, we provide some
details to ensure the results are still applicable in this more general setting. Let
x, y, y1, . . . , yk, β(1), . . . , β(k), and τ be as in Sect. 3.1. Let Q′ be the quiver with
k vertices whose double has 2p(β(i)) loops at vertex i and −(β(i), β( j)) arrows from
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vertex i to j . The k-tuple e = (e1, . . . , ek) defines a dimension vector for the quiver
Q′.

If X and Y are Poisson varieties, then we say that there is a étale Poisson isomor-
phism between a neighborhood of x ∈ X and y ∈ Y if there exists a Poisson variety

Z and Poisson morphisms Y
ψ←− Z

φ−→ X and z ∈ Z such that φ(z) = x , ψ(z) = y
and both φ and ψ are étale at z.

Theorem 3.3 There is an étale Poisson isomorphism between a neighborhood of 0 in
μ−1Q′ (0)//G(e) and a neighborhood of x ∈Mλ(α, θ).

The proof of Theorem 3.3 is given in Sect. 3.3 below. By taking the completion
M̂λ(α, θ)x ofMλ(α, θ) at x and the completion M̂0(e, 0)0 ofM0(e, 0) at 0, the formal
analogue of Theorem 3.3 is:

Corollary 3.4 There is an isomorphism of formal Poisson schemes M̂λ(α, θ)x �
M̂0(e, 0)0.

Remark 3.5 An easy calculation shows that p(α) = p(e). It can also be deduced from
the fact that dim M̂λ(α, θ)x = dim M̂0(e, 0)0. This fact will be useful later.

3.3 The proof of Theorem 3.3

Fix M = Rep(Q, α) and G = G(α). Recall that M has a canonical G-invariant
symplectic form ω. Since y ∈ Mθ , there exists some n > 0 and nθ -semi-invariant
function γ such that γ (y) �= 0. We fix such a γ , and let Mγ ⊂ Mθ be the affine open
subset of M defined by the non-vanishing of γ . Let H := G(α)y be the stabilizer
of y in G(α) and h the Lie algebra of H . Since h is reductive we can fix a h-stable
complement L to h in g. By [17, Lemma 4.1], the H -submodule g · y ⊂ M is isotropic,
and by [17, Corollary 2.3], there exists a coisotropic H -module complement C to g · y
in M . Let W = (g · y)⊥ ∩ C . The composition of μ : M → g∗ with the restriction
map g∗ → h∗ is denotedμH . Notice thatμH is simply the moment map for the action
of H on M . The restriction of μH to W is denoted μ̂. There is a natural identification
of W with Rep(Q

′
, e) such that μ̂ = μQ′ .

Lemma 3.6 The group H is isomorphic to G(e) and θ |H is the trivial character.

Proof The isomorphism H � G(e) follows from the fact that Hom�λ(Q)(M1, M2) =
0 ifM1 andM2 are non-isomorphic θ -stable representations and End�λ(Q)(Mi , Mi ) =
C. Under this identification,

θ |G(e) = (θ · β(1), . . . , θ · β(k)) = (0, . . . , 0) ∈ Z
Q′0

is the trivial stability condition. ��
As in [17], define ν : C → L∗ by

ν(c)(l) = ω(c, l · y)+ ω(c, l · c)+ ω(y, l · c).

Theorem 3.3 follows from the following more precise result.
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Theorem 3.7 There exists a G-saturated affine open set V ⊂ Mθ , and H-saturated
affine open sets Z ⊂ C and U ⊂ Rep(Q

′
, e) such that

(a) there are étale Poisson morphisms

φ : G ×H Z → V , ψ : Z ∩ ν−1(0)→ U ;

(b) the morphisms φ and ψ induce étale Poisson maps

(Z ∩ ν−1(0) ∩ μ−1H (0))//H → (U ∩ μ̂−1(0))//H ,

(φ∗μ)−1(λ)θ//G → (V ∩ μ−1(λ))//G.

(c) There is an isomorphism of Poisson varieties,

� : (Z ∩ ν−1(0) ∩ μ−1H (0))//H
∼−→ (φ∗μ)−1(λ)θ//G.

If we assume that y ∈ μ−1(λ) then for k ∈ h and l ∈ L ,

μ(y + c)(k + l) = λ(k + l)+ ν(c)(l)+ μH (c)(k)+ ω(y, k · c)− ω(k · y, c)
= λ(k + l)+ ν(c)(l)+ μH (c)(k)

because k · y = 0. We define δ : C → C by δ(c) = γ (c + y). Then δ is H -invariant.
We let Cδ denote the non-vanishing locus of δ. Then

{c ∈ C | c + y ∈ Mγ ∩ μ−1(λ)} = Cδ ∩ μ−1H (0) ∩ ν−1(0). (4)

Let X = G×H Cδ . Since M = C⊕g · y, the map φ : X → Mγ , φ(g, c) = g · (c+ y)
is étale at (1, 0). We recall that a G-morphism φ : X → Y is said to be excellent if

(a) φ is étale.
(b) The induced map φ/G : X//G → Y//G is étale.
(c) The morphism X → Y ×Y//G X//G is an isomorphism.

Lemma 3.8 There exists an affine, H-saturated open neighbourhood Z of 0 in Cδ ,
such that φ restricts to an excellent Poisson morphism

φ : G ×H Z → V := Im φ ⊂ Mγ ,

inducing a étale Poisson morphism

(φ∗μ)−1(λ)//G → (μ−1(λ) ∩ V )//G.

Proof This is a direct consequence of Luna’s Fundamental Lemma [41], together with
the fact that every G-saturated affine open subset of X is of the form G ×H Z for
some H -saturated open subset of Cδ . Since φ : G ×H Z → V is excellent, the form
φ∗ω on X is symplectic, with moment map φ∗μ. In particular, [27, Lemma 3.7] says
that the corresponding étale morphism of Hamiltonian reductions (φ∗μ)−1(λ)//G →
(μ−1(λ) ∩ V )//G is Poisson. ��
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Proposition 3.9 There exist H-saturated open subsets Z of ν−1(0) and U of W such
that the morphism

(μ−1H (0) ∩ Z)//H → (μ̂−1(0) ∩U )//H

is Poisson and étale.

Proof Let ω̂ = ω|W . As in [17, Lemma 4.3], ω̂ is a H -invariant symplectic form on
W , with corresponding moment map μ̂. Write p : C → W for the projection map
along C⊥ and p : ν−1(0) → W for the restriction of p to ν−1(0). We claim that
p∗ω̂ = ω|ν−1(0) and p∗μ̂ = μH |ν−1(0). This follows, by definition, from p∗ω̂ = ω|C
and p∗μ̂ = μH |C . The latter two equalities can be checked by a direct computation.

By [17, Lemma 4.5], the map ν is smooth at 0 and ω|ν−1(0) is non-degenerate at 0
withmomentmapμH |ν−1(0).Moreover, loc. cit. shows that the kernel of d0ν isW , thus
d0 p : T0ν−1(0) → T0W is the identity map. This implies that p : ν−1(0) → W is
étale at 0. Applying Luna’s Fundamental Lemma once again, we deduce that there are
H -saturated affine open subset Z ⊂ ν−1(0) andU = p(Z) such that p : Z → U and
p/H : Z//H → U//H are étale. Since p∗μ̂ = μH |ν−1(0), pulling back p/H along the

closed embedding μ̂−1(0)//H → W//H gives an étale morphism (Z ∩μ−1H (0))//H →
(U ∩ μ̂−1(0))//H .

Shrinking Z if necessary, we may assume that p∗ω̂ = ω|ν−1(0) is non-degenerate
on Z . Since p∗μ̂ = μH |ν−1(0), it follows from [27, Lemma 3.7] that the map (Z ∩
μ−1H (0))//H → (U ∩ μ̂−1(0))//H is Poisson. ��

The H -equivariant closed embedding j : ν−1(0) ∩ Cδ ↪→ G ×H Cδ given by
j(c) = (1, c) induces an isomorphism

� : (μ−1H (0) ∩ ν−1(0) ∩ Z)//H ∼→ (φ∗μ)−1(λ)//G. (5)

We will show later that this isomorphism is Poisson. Let M(H) be the set of points m
in Mθ such that

(a) G · m is closed in Mθ ; and
(b) Gm is conjugate to H .

If V is a G-module, then VG denotes the complement to VG .

Lemma 3.10 The set M(H) is a smooth locally closed subset of Mθ with

TmM(H) = TmM
H ⊕ (g/h)H , ∀ m ∈ (

M(H)

)H
. (6)

Proof To show that M(H) is locally closed, it suffices to prove that, for each m ∈
M(H), there exists some G-stable affine open neighbourhood U of m in Mθ such
that U ∩ M(H) is closed in U . By a result of Richardson, [57, Proposition 3.3], the
fact that all stabilizers are connected implies that there is a G-stable open set U such
that the stabilizer Gu of each u ∈ U is conjugate to a subgroup of H . In particular,
we see that if n = dim H then dimGu < n for all u ∈ U � M(H). Therefore,
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U ∩ M(H) = {u ∈ U | dimGu ≥ n}. This is closed by [9, Lemma 2.2]. It will follow
thatM(H) is smooth if we can prove identity (6), sinceMH is smooth by [61, Corollary
6.5].

In order to prove identity (6), we apply Luna’s slice theorem [41]. There exists
an excellent map φ : G ×H S → U , where S is a slice to the G-orbit at m. Then,
φ−1(M(H)) = G ×H S(H) = G/H × SH . Thus,

d(1,m)φ : T(1,m)

(
G/H × SH

) ∼−→ TpM(H)

has image TmSH ⊕ g · m in TmM , hence TmM(H) = TmSH ⊕ g · m. Since SH ⊂
MH ⊂ M(H), we have TmSH ⊂ TmMH ⊂ TmM(H) and hence

TmM
H = (TmM)H = (TpM(H))

H = TmS
H ⊕ (g · m)H .

Thus,

TpM(H) = TmS
H ⊕ (g · m)H ⊕ (g · m)H = TmM

H ⊕ (g/h)H

as required. ��
Lemma 3.11 The variety μ−1(λ)θ ∩ M(H) is smooth, with

Ty
(
μ−1(λ)θ ∩ M(H)

)
= (MH ∩ (g · y)⊥)⊕ (g · y)H ,

for all y ∈ μ−1(λ)θ ∩ (M(H))
H .

Proof Note that every point of μ−1(λ)θ ∩ M(H) is conjugate by G to some point in
μ−1(λ)θ ∩ (M(H))

H . By Lemma 3.10, we have

Ty
(
μ−1(λ)θ ∩ M(H)

)
= TyM(H) ∩ Ker dyμ,

= (MH ⊕ g · y) ∩ (g · y)⊥
= (MH ∩ (g · y)⊥)⊕ (g · y)H

since g · y ⊂ (g · y)⊥ is isotropic. Therefore, we just need to show that the dimension of
μ−1(λ)θ ∩M(H), as a reduced variety, is also equal to dim((MH ∩(g · y)⊥)⊕(g · y)H ).
We have

(φ∗μ)−1(λ) ∩ (G ×H C)(H) = G ×H (ν−1(0) ∩ μ−1H (0))(H).

Set-theoretically, this equals G/H × ν−1(0)H (which is smooth) and there is an étale
map from this space to G/H ×WH . Thus, we just need to show that

dim((MH ∩ (g · y)⊥)⊕ (g · y)H ) = dimG/H × ν−1(0)H .
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If M = C ⊕ (g · y), then MH = CH ⊕ (g · y)H . The fact that W = C ∩ (g · y)⊥
implies that

CH ∩ (g · y)⊥ =
(
C ∩ (g · y)⊥

)H = WH .

Thus,

dim((MH ∩ (g · y)⊥)⊕ (g · y)H ) = dimCH ∩ (g · y)⊥ + dim(g · y)H + dim(g · y)H
= dimWH + dim(g · y)
= dimG/H × ν−1(0)H

as required. ��
Theorem 3.12 There exists a unique symplectic form ωH on Mλ(α, θ)(H) such that

π∗ωH = ω|μ−1(λ)θ∩M(H)
,

where π : μ−1(λ)θ ∩ M(H) →Mλ(α, θ)(H) is the quotient map.

Proof For brevity, let Y = μ−1(λ)θ ∩ M(H) ∩ V , where V is the affine open set of
Lemma 3.8, and setM =Mλ(α, θ). Abusing notation, we will also writeM ∩ V for
the affine open subset (V ∩μ−1(λ))//G ofM. We claim that we have a commutative
diagram of linear maps

WH ⊕ g/h TyY

W H TyM(H),

∼

dyπ

∼

where the vertical map on the left is just projection.
Since φ is excellent, we have an identification

φ−1(Y ) = G/H × (ν−1(0)H ∩U ),

which means that the diagram

G/H × ν−1(0)H Y

(
G/H × ν−1(0)H

)
//G M(H)

φ

η π

φ/G

commutes, with φ and φ/G being étale. Under the identification T0ν−1(0)H = WH ,
the differential map dη : T0ν−1(0)H ⊕ g/h → T0ν−1(0)H is the projection map
WH ⊕ g/h→ WH , as required.
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We deduce that π is a smooth morphism on Y . Hence π∗ : �2
(M∩V )(H)

→ �2
Y

is an embedding, with image
(
�2

Y

)G
. Thus, there is a unique (closed) 2-form ωH on

(M ∩ V )(H), whose pull-back along π equals ω|Y .
Finally, to prove thatωH is symplectic it suffices to prove that the radical ofω|Y atm

equals g/h. Clearly the latter is contained in the former. Since TmY = WH ⊕ (g/h), it
suffices to show that ω|WH is non-degenerate. Recall that ω̂ = ω|W is non-degenerate.
Then WH is a symplectic subspace since ω̂ is H -invariant. ��

Next, we show that the symplectic forms ωH come from the Poisson structure on
μ−1(λ)θ//G.

Lemma 3.13 For each f ∈ C[V ]G, theHamiltonian vector field ζ f is tangent to M(H).

Proof By Lemma 3.10, M(H) is smooth, therefore it suffices to show that (ζ f )y ∈
TyM(H) for all y ∈ (M(H))

H . Recall fromLemma 3.10 that TyM(H) = MH⊕(g/h)H .
The canonical mapDer(V )→ TyM(H) is H -equivariant. Since {−,−} isG-invariant,
and f ∈ C[V ]G , the Hamiltonian vector field ζ f belongs to Der(V )G ⊂ Der(V )H .
Hence (ζ f )y ∈ (TyM)H = MH ⊂ TyM(H), as required. ��
Theorem 3.14 The space Mλ(α, θ)(H) is a locally closed Poisson subvariety, such
that the restriction {−,−}|Mλ(α,θ)(H)

of the Poisson bracket on Mλ(α, θ) equals the
Poisson structure induced by ωH . In particular, it is non-degenerate.

Proof Again, let M = Mλ(α, θ). First we show that it is a Poisson subvariety. It
suffices to show that each Hamiltonian vector field ζ f̄ on M ∩ V is tangent to (M ∩
V )(H). Let f ∈ C[V ]G be a lift of f̄ . Then, by Lemma 3.13, ζ f is tangent to M(H) ∩
μ−1(λ)θ . By definition of Hamiltonian reduction, ζ f is also tangent to V ∩ μ−1(λ)θ .
Therefore, it descends to the vector field ζ f̄ on M, which is tangent to (M(H) ∩ V ∩
μ−1(λ)θ )//G. But, by Theorem 3.12,

(M(H) ∩ V ∩ μ−1(λ)θ )//G = (M ∩ V )(H),

as required.
Next, we show that the two Poisson structures agree. Once again, we let Y =

V ∩ M(H) ∩ μ−1(λ)θ , and let π : Y → (V ∩M)(H) be the quotient map.
Choose a function f̄ defined on (V ∩M)(H) and denote by the same symbol an

arbitrary lift to V ∩M. Since the form ωH is non-degenerate on (V ∩M)(H) there
exists a Hamiltonian vector field ζ ′̄

f
on (V ∩M)(H) satisfying the defining equation

ωH (ζ ′̄
f
, η) = −η( f̄ ) for all vector fields η. The non-degeneracy of ωH implies that

it suffices to prove that ωH (ζ f̄ , η) = ωH (ζ ′̄
f
, η) for all η, since ζ f̄ = ζ ′̄

f
implies

that { f̄ , g} = { f̄ , g}′ for all functions g on (V ∩M)(H). Thus, we must show that
ωH (ζ f̄ , η) = −η( f̄ ).

Since the quotient map π : Y → (V ∩M)(H) is smooth, we can choose a lift of
η. In fact, if we ask that the lift be G-invariant, it is unique, and so we will denote it
by η too. If f is a lift of f̄ to C[V ]G , then ζ f is tangent to Y , and ζ f |Y is a lift of ζ f̄ .
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Therefore,

ωH (ζ f̄ , η) = π∗ωH (ζ f |Y , η) = ω|Y (ζ f |Y , η).

Finally, if we choose an arbitrary lift η′ of η to V , then

ω|Y (ζ f |Y , η) = ω(ζ f , η
′)|Y = −η′( f )|Y = −η( f |Y ) = −η( f̄ ). ��

Finally, we complete the proof of Theorem 3.7.

Proof of Theorem 3.7 All claims, except for the final one, follow from Lemma 3.8 and
Proposition 3.9. Thus, it suffices to note that the isomorphism � of (5) is Poisson.
Choose a generic point n in

(Z ∩ ν−1(0) ∩ μ−1H (0))//H � (φ∗μ)−1(λ)θ//G.

Then there exists some K ⊂ H such that n ∈ ((Z ∩ ν−1(0) ∩ μ−1H (0))//H)(K ). Both
Poisson structures on this open stratum are non-degenerate. Therefore, it suffices to
show that the corresponding symplectic 2-forms agree via�. Recall that the symplectic
form on ((Z ∩ ν−1(0) ∩ μ−1H (0))//H)(K ) is the unique form such that its pull-back to
Z(K ) ∩ ν−1(0) ∩ μ−1H (0) agrees with ω|Z(K )∩ν−1(0)∩μ−1H (0). Similarly, the symplectic

form on ((φ∗μ)−1(λ)θ//G)(K ) is the unique symplectic formwhose pull-back to D :=
(G ×H Z(K ))∩ (φ∗μ)−1(λ)θ equals (φ∗ω)|D . Therefore, since the map � is induced
by the closed embedding j , it suffices to show that

j∗((φ∗ω)|D) = ω|Z(K )∩ν−1(0)∩μ−1H (0).

But this follows from the fact that

D = φ−1(V(K ) ∩ μ−1(λ)θ ), j−1(D) = Z(K ) ∩ ν−1(0) ∩ μ−1H (0),

and φ ◦ j is the map c �→ c + m, so that j∗φ∗ω = ω|ν−1(0)∩Cδ
, since ω is invariant

under translation. ��

The following result is an important consequence of Theorem 3.14.

Proposition 3.15 The strata Mλ(α, θ)τ :=Mλ(α, θ)(Gτ ) define a finite stratification
of Mλ(α, θ) into locally closed subsets such that

Mλ(α, θ)(H) ⊂Mλ(α, θ)(L) ⇔ (H) ≤ (L).

Moreover, the connected components of the strata are precisely the symplectic leaves
of Mλ(α, θ), with respect to its natural Poisson bracket.
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Proof It is well-known that the stratification of Rep(Q, α)θ//G(α) by stabilizer type
is finite, with smooth locally closed strata. Therefore the stratification {Mλ(α, θ)τ }
of Mλ(α, θ) is finite with locally closed strata. Thus it suffices to show that (a) each
stratum is smooth, and (b) the Poisson structure is non-degenerate on each stratum. In
fact, (b) implies (a), and both statements are implied by Theorem 3.14. ��

We will show in Corollary 3.25 that each stratumMλ(α, θ)τ is connected.

3.4 Hyperkähler twisting

Let α = m1ν
(1) + · · · + mtν

(t) be the canonical decomposition of α with respect to
	λ. It is shown in [16] that

Theorem 3.16 [16] There is an isomorphism of varieties
∏

i S
mi

(
Mλ(ν

(i), 0)
) �

Mλ(α, 0).

Moreover, if ν(i) is real then Smi
(
Mν(i) (λ, 0)

) = {pt} and if ν(i) is anisotropic then
mi = 1. We now adapt Crawley-Boevey’s result to the case where θ �= 0:

Theorem 3.17 Let α = n1σ (1) + · · · + nkσ (k) be the canonical decomposition of α

with respect to 	λ,θ . Then, there is an isomorphism of Poisson varieties

φ :
∏

i

Sni
(
Mλ(σ

(i), θ)
) ∼−→Mλ(α, θ).

The proof of Theorem 3.17 is given at the end of Sect. 3.5. In order to deduce Theo-
rem 3.17 from [16, Theorem 1.1], we use hyperkähler twists. By our main assumption
(1), λ ∈ R

Q0 .

Proposition 3.18 Let ν = −λ − iθ and consider Mλ(α, θ), Mν(α, 0) as complex
analytic spaces. Hyperkähler twisting defines a homeomorphism of stratified spaces

� :Mλ(α, θ)
∼−→Mν(α, 0),

i.e. � restricts to a homeomorphism Mλ(α, θ)(H)
∼−→ Mν(α, 0)(H) for all classes

(H). In particular, the homeomorphism maps stable representations to stable (= sim-
ple) representations.

Proof We follow the setup described in the proof of [14, Lemma 3]. We have moment
maps

μC(x) =
∑

a∈Q1

[xa, xa∗ ], μR(x) =
√−1
2

∑

a∈Q1

[xa, x†a ] + [xa∗ , x†a∗ ].

As shown in [34, Corollary 6.2], the Kempf-Ness Theorem says that the embedding
μ−1
C

(λ) ∩ μ−1
R

(iθ) ↪→ μ−1
C

(λ) induces a bijection

μ−1
C

(λ) ∩ μ−1
R

(iθ)/U (α)
∼−→Mλ(α, θ). (7)
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Since the embedding is clearly continuous and the topology on the quotientsμ−1
C

(λ)∩
μ−1
R

(iθ)/U (α) and Mλ(α, θ) is the quotient topology (for the latter space, see [54,
Corollary 1.6 and Remark 1.7]), the bijection (7) is continuous.

Define a stratification μ−1
C

(λ) ∩ μ−1
R

(iθ)/U (α) analogous to the stratification of
Mλ(α, θ) described in Sect. 3.1. Let y ∈Mλ(α, θ), and x = xe11 ⊕· · ·⊕ xekk ∈ T (y) a
θ -polystable lift inμ−1

C
(λ)∩μ−1

R
(iθ) (which exists by Proposition 3.1). Then Lemma

3.6 says that Gx = G(e) and [34, Proposition 6.5] implies thatU (α)x = U (e). Hence
G(α)x = U (α)Cx . Therefore the homeomorphism (7) restricts to a bijection

(μ−1
C

(λ) ∩ μ−1
R

(iθ)/U (α))(K ) →Mλ(α, θ)(KC)

for each (K ).
Let the quaternionsH = R⊕Ri⊕Rj⊕Rk act on Rep(Q, α) by extending the usual

complex structure so that j · (xa, xa∗) = (−x†a∗ , x†a ) and k · (xa, xa∗) = (−ix†a∗ , ix†a ).
Here the dagger denotes the Hermitian adjoint. In general,

(z1 + z2j) · (xa, xa∗) = (z1xa − z2x
†
a∗ , z1xa∗ + z2x

†
a ).

This action commutes with the action of U (α) and satisfies

μR(z · x) = (||z1||2 − ||z2||2)μR(x)− iz1z2μC(x)− iz2z1μC(x)†, (8)

μC(z · x) = z21μC(x)− z22μC(x)† − 2iz1z2μR(x), ∀ z ∈ H. (9)

Let h = (i− j)/
√
2. Then multiplication by h defines a homeomorphism

μ−1
C

(λ) ∩ μ−1
R

(iθ)
∼−→ μ−1

C
(−λ− iθ) ∩ μ−1

R
(0)

Since multiplication by h commutes with the action of U (α), this homeomorphism
descends to a homeomorphism

(
μ−1
C

(λ) ∩ μ−1
R

(iθ)
)

/U (α)
∼−→

(
μ−1
C

(−λ− iθ) ∩ μ−1
R

(0)
)

/U (α)

which preserves the stratification by stabilizer type.
Thus, the map � is the composition of three homeomorphisms, each of which

preserves the stratification. ��
Remark 3.19 Our general assumption that λ ∈ R

Q0 if θ �= 0 is required in the proof
of Proposition 3.18 to ensure that multiplication by h lands in μ−1

R
(0). Equation (8)

implies that it would suffice to assume more generally that there exists z ∈ C such
that |z| = 1 and zλ ∈ R

Q0 . It is natural to expect that Theorem 3.17 holds without the
assumption λ ∈ R

Q0 .

Remark 3.20 Using the notion of smooth structures on stratified symplectic spaces, as
defined in [59], one can presumably strengthen Proposition 3.18 to the statement that
there is a diffeomorphism of stratified symplectic spaces Mλ(α, θ)

∼−→Mν(α, 0).
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Proposition 3.21 The variety Mλ(α, θ) is irreducible and normal.

Proof We begin by showing that the varietyMλ(α, θ) is connected. Proposition 3.18
implies thatMλ(α, θ) is connected if and only ifMν(α, 0) is connected. The latter is
known to be connected (and nonempty) by [16, Corollary 1.4].

Next, we show thatMλ(α, θ) is irreducible. SinceMλ(α, θ) is connected, it suffices
to show that, for each C-point x ∈ Mλ(α, θ), the local ring OMλ(α,θ),x is a domain.
This ring embeds into the complete local ring of x in Mλ(α, θ). By Corollary 3.4,
the complete local ring of x in Mλ(α, θ) is isomorphic to the complete local ring of
0 in M0(e, 0). By [16, Corollary 1.4], this is a domain. Finally, normality is an étale
local property, [45, Remark 2.24 and Proposition 3.17]. Therefore, as in the previous
paragraph this follows from Theorem 3.3 and [17, Theorem 1.1]. ��

We can now prove Theorem 1.3.

Proof of Theorem 1.3 Let ν = −λ− iθ . By the last statement of Proposition 3.18, there
exists a θ -stable representation of �λ(Q) of dimension α if and only if there exists
a simple representation of �ν(Q) of dimension α. By [15, Theorem 1.3], the latter
happens if and only if α ∈ 	ν . Since λ ∈ R

Q0 , the sets 	ν and 	λ,θ are equal. Thus,
we deduce that there exists a θ -stable representation of �λ(Q) of dimension α if and
only if α ∈ 	λ,θ . ��

As a consequence of Theorem 1.3 and Proposition 3.21, we obtain:

Corollary 3.22 For α ∈ 	λ,θ , the locus of θ -stable representations is dense in
Mλ(α, θ).

3.5 The proof of Theorem 3.17

Recall that α = n1σ (1)+· · ·+nkσ (k) is the canonical decomposition of α in R+λ,θ . The

map φ is defined as follows. Let H(α) be the product G(σ (1))n1 × · · · × G(σ (k))nk ,
thought of as a subgroup of G(α). There is a natural H(α)-equivariant inclusion∏

i T
∗ Rep(Q, σ (i))ni ↪→ T ∗ Rep(Q, α). This is an inclusion of symplectic vector

spaces. Since the moment map for the action of H(α) on T ∗ Rep(Q, α) is the com-
position of the moment map for G(α) followed by projection from the Lie algebra
of G(α) to the Lie algebra of H(α), the above inclusion restricts to an inclusion∏

i (μ
−1
σ (i) (λ)θ )ni ↪→ μ−1α (λ)θ , inducing a map of GIT quotients

∏

i

Mλ(σ
(i), θ)ni →Mλ(α, θ).

This map, which sends a tuple of representations (Mi, j ) to the direct sum
⊕

i, j Mi, j

clearly factors through
∏

i S
ni

(
Mλ(σ

(i), θ)
)
. It is this map that we call φ.
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Passing to the analytic topology, Proposition 3.18 implies that we get a commutative
diagram

∏
i S

ni
(
Mλ(σ

(i), θ)
)

��

��

Mλ(α, θ)

��∏
i S

ni
(
Mλ(−σ (i) − iθ, 0)

)
�� M−λ−iθ (α, 0).

(10)

where both vertical arrows are homeomorphisms and the bottom horizontal arrow is
an isomorphism by Theorem 3.16. Therefore, we conclude that φ is bijective. Since we
are working over the complex numbers, and we have shown in Proposition 3.21 that
Mλ(α, θ) is normal, we conclude by Zariski’s main theorem that φ is an isomorphism.

As a consequence, we can compute the dimension of Mλ(α, θ), which in the case
θ �= 0 is [15, Corollary 1.4]. We begin with the following basic lemma:

Lemma 3.23 If α ∈ 	λ,θ , then dimMλ(α, θ) = 2p(α). Moreover dimμ−1(λ)θ ≥
α · α + 2p(α)− 1.

Proof Let U be the subset of Mλ(α, θ) consisting of θ -stable representations. Since
α is assumed to be in 	λ,θ , Corollary 3.22 implies that U is a dense open subset of
Mλ(α, θ). Let V be the open subset of Rep(Q, α) consisting of θ -stable representa-
tions. Then U is the image of μ−1(λ) ∩ V under the quotient map and hence V is
non-empty. The group PG(α) acts freely on V and μ is smooth when restricted to V .
Thus,

dimU = dim Rep(Q, α)− 2(dimG(α)− 1) = 2p(α),

as required. For the second statement, observe that dim(V ∩ μ−1(λ)) = dimU +
dim PG(α) since PG(α) acts freely on V . ��
Then we immediately conclude

Corollary 3.24 Forα ∈ R+λ,θ with canonical decompositionα = n1σ (1)+· · ·+nkσ (k),

the variety Mλ(α, θ) has dimension 2
∑k

i=1 ni p(σ (i)).

Finally, we need to check that the morphism φ is Poisson. Since both varieties are
normal by Proposition 3.21, it suffices to show that φ induces an isomorphism of
smooth symplectic varieties between the open leaf of Mλ(α, θ) and the open leaf of∏

i S
ni

(
Mλ(σ

(i), θ)
)
. By Proposition 3.15, the symplectic leaves of Mλ(α, θ) are

connected components of the strata given by stabilizer type. The explicit description
of φ given at the start of this section shows that φ restricts to an isomorphism between
strata. In particular, φ restricts to an isomorphism between the open leaves.

The symplectic structure on the open leaf ofMλ(α, θ) comes from the symplectic
structure on T ∗ Rep(Q, α). More specifically, the non-degenerate closed form on the
latter space restricts to a degenerate G(α)-invariant two-form on μ−1(λ)θ . Hence it
descends to a closed two-form on Mλ(α, θ). The restriction of this two-form to the
open leaf is non-degenerate. The two-form on the open leaf of

∏
i S

ni
(
Mλ(σ

(i), θ)
)
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is defined similarly. Now the point is that under the embedding
∏

i (μ
−1
σ (i) (λ)θ )ni ↪→

μ−1α (λ)θ , the H(α)-invariant closed two-form on
∏

i (μ
−1
σ (i) (λ)θ )ni is simply the pull-

backof theG(α)-invariant closed two-formonμ−1α (λ)θ . This implies that the two-form
on the open leaf of

∏
i S

ni
(
Mλ(σ

(i), θ)
)
is the pull-back, under φ, of the symplectic

two-form on the open leaf of Mλ(α, θ).
UsingProposition 3.21,we cannowshow that each stratumMλ(α, θ)τ is connected.

Corollary 3.25 Each stratum Mλ(α, θ)τ of Mλ(α, θ) is irreducible (and thus con-
nected) and nonempty. In particular, the strataMλ(α, θ)τ are precisely the symplectic
leaves of Mλ(α, θ).

Proof Writing τ = (e1, β(1); . . . ; ek, β(k)), we can repeat the construction of φ given
above (even though τ is not the canonical decomposition of α) to get a morphism

φ :
∏

i

SeiMλ(β
(i), θ)→Mλ(α, θ).

The stratum Mλ(α, θ)τ is contained in the image of φ and φ−1(Mλ(α, θ)τ ) is dense
in the domain of φ by Corollary 3.22. Since the domain is irreducible and nonempty
by Proposition 3.21, we deduce that Mλ(α, θ)τ is irreducible. ��
Remark 3.26 The statement of Corollary 3.25 (at least in the case θ = 0) appears as
Theorem 1.3 of [43]. However, it is falsely claimed in Proposition 4.5 of that paper
that the irreducibility of the stratum Mλ(α, 0)τ follows from a result of G. Schwarz.

3.6 Flatness of themomentmap

We need an additional result which follows from [17]. Let ξ : μ−1(λ)θ →Mλ(α, θ)

be the quotient map.

Theorem 3.27 [17, Corollary 6.4] For τ = (e1, β(1); . . . ; ek, β(k)) a representation
type,

dim ξ−1(Mλ(α, θ)τ ) ≤ α · α − 1+ p(α)+
k∑

i=1
p(β(i)). (11)

Proof The proof follows verbatim as in [17, Corollary 6.4], substituting θ -stable rep-
resentations for simple representations. Alternatively, [17, Corollary 6.4] as written
together with Theorem 3.3 yields the result. ��
Proposition 3.28 The restricted moment map μ : Rep(Q, α)θ → pg(α) is flat over
an open subset U containing Bα,θ := {λ ∈ R

Q0 | α ∈ 	λ,θ } ⊆ R
Q0 , with all fibers

of dimension α · α + 2p(α)− 1. In particular, if α ∈ 	λ,θ , then the variety μ−1(λ)θ

is a complete intersection in the open subset μ−1(U )θ ⊆ Rep(Q, α)θ .

Proof By Lemma 3.23 and Theorem 3.27, all of the fibers μ−1(λ) for λ ∈ Bα,θ have
the same dimension, α ·α+2p(α)−1. Since this equals the difference of dimensions



Symplectic resolutions of quiver varieties Page 29 of 50    36 

dim Rep(Q, α)− dim pg(α), it follows that the subset of the base where the fiber has
this dimension is open, call it U . Then, since Bα,θ is smooth, and μ−1(U ) is open
(hence smooth and therefore Cohen–Macaulay), it follows that the moment map is flat
as stated, and therefore that every fiber is a complete intersection. ��

4 Smooth versus stable points

As usual, choose a deformation parameter λ ∈ R
Q0 , a stability parameter θ ∈ Z

Q0 ,
and a dimension vector α ∈ NR+λ,θ . The main goal of this section is to prove Theorem
1.15, which says that x ∈Mλ(α, θ) is canonically θ -polystable if and only if it is in
the smooth locus of Mλ(α, θ).

4.1 Isotropic roots

In this section, we briefly consider quiver varieties associated to isotropic roots. The
subgroup of GL(ZQ0) generated by the reflection at loop free vertices is denoted
W (Q).

Lemma 4.1 Let α ∈ 	λ,θ be an isotropic root. Then there exists w ∈ W (Q) such that
δ = wα is in the fundamental domain, Q′ = Supp δ is an affine Dynkin quiver, δ|Q′
is the minimal imaginary root and Mλ(α, θ) �Mwλ(δ,wθ).

Proof As the name implies, the fundamental domain F(Q) is a fundamental domain
for the action of the reflection group W (Q) of Q on the set of imaginary roots.
Therefore there exists w such that wα ∈ F(Q). The fact that Q′ is affine Dynkin and
δ|Q′ is the minimal imaginary root follows from [28, Lemma 1.9 (d)].

Thus, we show that δ ∈ 	wλ,wθ and Mλ(α, θ) � Mwλ(δ,wθ). The Lusztig-
Maffei-Nakajima reflection isomorphisms of quiver varieties (see in particular [42,
Theorem 26]) shows that if either λi or θi is non-zero (equivalently, as explained in
example 1, if ei /∈ 	λ,θ ) then Mλ(α, θ) �Msiλ(siα, siθ). It is easily checked that if
ei ∈ 	λ,θ then (α, ei ) ≤ 0 (otherwise α = (α − ei ) + ei with p(α) = p(α − ei )).
Moreover, the fact that si permutes the set R+ � {ei } implies that siα ∈ 	siλ,si θ

if ei /∈ 	λ,θ . Hence, we need to show that w = sir · · · si1 can be chosen so that
(sil · · · si1λ)il+1 �= 0 or (sil · · · si1θ)il+1 �= 0 for all l = 1, . . . , r − 1. Recall that every
positive root β = ∑

i∈Q0
ki ei has height ht(β) := ∑

i∈Q0
ki ≥ 1. As in the proof of

[12, Proposition 16.10], the key thing to note is that δ is specified by the fact that it is the
unique element of minimal height in the orbitW (Q) ·α. Thus, if α /∈ F(Q), then there
exists i ∈ Q0 such that (α, ei ) > 0. This implies that ei /∈ 	λ,θ and ht(siα) < ht(α).
Since every element in the orbit W (Q) · α is a positive root (and hence has positive
height) this cannot continue forever, and the result follows. ��

In particular, we note that Lemma 4.1 implies that if α ∈ 	λ,θ is an isotropic
root, then Mλ(α, θ) is the partial resolution of a partial deformation of a Kleinian
singularity. Moreover, the type of the Kleinian singularity is specified by the support
of wα ∈ F .



   36 Page 30 of 50 G. Bellamy , T. Schedler

4.2 The proof of Theorem 1.15

The proof of Theorem 1.15 follows closely the arguments given in [38, Theorem 3.2].
We provide the necessary details that show that the arguments of loc. cit. are valid
in our setting. First, notice that, under the isomorphism of Theorem 3.17, the open
subset of canonically θ -polystable points inMλ(α, θ) is the product of the canonically
θ -polystable points in the spaces SniMλ(σ

(i), θ). Therefore it suffices to show that
the set of canonically θ -polystable points in SniMλ(σ

(i), θ) is precisely the smooth
locus. If σ (i) is real then SniMλ(σ

(i), θ) is a point. If σ (i) is an isotropic root then by
Lemma 4.1, Mλ(σ

(i), θ) is a partial resolution of a du Val singularity. In particular,
it is a 2-dimensional (quasi-projective) variety. This implies that the smooth locus of
SniMλ(σ

(i), θ) equals

Sni ,◦Mλ(σ
(i), θ)sm

:=
{
(p j )

∣
∣
∣ p j ∈Mλ(σ

(i), θ)sm, p j �= pk for j �= k
}

.

On the other hand, the set of canonically θ -polystable points in SniMλ(σ
(i), θ) equals

Sni ,◦U , where U ⊂Mλ(σ
(i), θ) is the set of canonically θ -polystable points. There-

fore, in this case it suffices to show that Mλ(σ
(i), θ)sm equals U . Finally, in the case

where σ (i) is an anisotropic root, we have ni = 1.
Thus, we are reduced to considering the situation where α ∈ 	λ,θ is an imaginary

root. In this case, a point x is canonically θ -polystable if and only if it is θ -stable. As
in the proof of Corollary 3.24, it is clear from the definition of Mλ(α, θ) that the set
of θ -stable points is contained in the smooth locus. Therefore it suffices to show that
if x is not θ -stable then it is a singular point. As in Sect. 3.2, let x be the image of a θ -
polystable representation y = ye11 ⊕· · ·⊕ ye

 (with the yi θ -stable). Let β(i) = dim yi .
Let Q′ be the quiver with 
 vertices whose double has 2p(β(i)) loops at vertex i and
−(β(i), β( j)) arrows between vertex i and j . The 
-tuple e = (e1, . . . , e
) defines
a dimension vector for the quiver Q′. By Theorem 3.3, it suffices to show that 0 is
contained in the singular locus of M0(e, 0).

In order to proceed, we require [37, Proposition 1.1], stated in our generality. The
proof is identical to the proof given in loc. cit., this time using Theorem 3.3.

Proposition 4.2 Assume that α ∈ 	λ,θ and let x be a geometric point of Mλ(α, θ),
of representation type τ = (e1, β1; . . . ; ek, βk). Then e is the dimension vector of a
simple �0(Q′)-module, i.e., e ∈ 	0(Q′).

Returning to the proof of Theorem 1.15, with Proposition 4.2 in hand, the argument
given in the proof of [38, Theorem 3.2] goes through verbatim. This completes the
proof of Theorem 1.15.

4.3 The proof of Corollary 1.17

By Theorem 1.15, Mλ(α, θ) is smooth if and only if every point is canonically θ -
polystable. As in the reduction argument given at the start of the proof of Theorem
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1.15, this means that ni must be 1 when σ (i) is an isotropic root. Moreover, it is clear
that Mλ(σ

(i), θ) consists only of θ -stable points if and only if σ (i) is minimal.

5 The (2, 2) case

In this section we will prove Theorem 1.6. First we restrict to the one vertex case.

5.1 The varietyX(2, 2)

Recall that X(g, n) denotes the quiver variety

{

(X1,Y1, . . . , Xg,Yg) ∈ EndC(Cn)

∣
∣
∣
∣
∣

d∑

i=1
[Xi ,Yi ] = 0

}

//GL(n, C).

We note that X(g, n) is an irreducible, normal affine variety of dimension 2(n2(g −
1)+ 1).

Set (g, n) = (2, 2), so dimX(g, n) = 10. We recall results of Kaledin–Lehn [31],
see also [39], which explain that X(2, 2) admits a projective symplectic resolution.

LetW = sl2 and (V , ω) a 4-dimensional symplectic vector space. Let κ denote the
Killing form on W . Then κ ⊗ ω is a symplectic form on W ⊗ V . We identify sp(V )∗
with sp(V ) via its Killing form. There is an action of PGL(2) on W by conjugation
and hence onW⊗V . This action is Hamiltonian and commutes with the natural action
of Sp(V ) on W ⊗ V . The moment map for the action of PGL(2) is given by

μ

(
∑

i

Ai ⊗ vi

)

=
∑

i, j

Ai A jω(vi , v j )

=
∑

i< j

[Ai , A j ]ω(vi , v j ).

The moment map for the action of Sp(V ) is given by
∑

i Ai ⊗ vi �→ ν(
∑

i Ai ⊗ vi ),
where

ν

(
∑

i

Ai ⊗ vi

)

(u) =
∑

i, j

κ(Ai , A j )ω(vi , u)v j .

Since the actions of PGL(2) and Sp(V ) on μ−1(0) commute, the map ν descends to
a map μ−1(0)//PGL(2) → sp(V ), which we also denote by ν. Let N 2

2 ⊂ sp(V ) be
the set {B | B2 = 0, rkB = 2}. The set N 2

2 is a 6-dimensional adjoint Sp(V )-orbit.

Its closure N := N 2
2 = N 2

2 ∪ N 2
1 ∪ {0} consists of three Sp(V )-orbits and one can

check that N 2
1 � C

4/Z2, where Z2 acts on C
4 with weights (−1,−1,−1,−1). The

following result is proven in [31].
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Theorem 5.1 [31] The map ν defines an isomorphism μ−1(0)//PGL(2)
∼−→ N of

Poisson varieties. In particular, μ−1(0)//PGL(2) is a symplectic singularity.

Taking trace of the matrices (X1, X2,Y1,Y2) ∈ X(2, 2) defines an isomorphism
of symplectic singularities X(2, 2) � μ−1(0)//PGL(2) × C

4, where C
4 is given the

usual symplectic structure. Thus, X(2, 2) � N × C
4.

5.2 Proof of Theorem 1.6

We now prove Theorem 1.6, following the arguments of [31, Remark 4.6]; see also
[39].

Since α is anisotropic, 2α is also an anisotropic root. Choose a generic stability
parameter θ ′ ≥ θ with θ ′ · β �= 0 for all nonzero β ≤ 2α, β �= α. Then the projective
Poisson morphism Mλ(2α, θ ′) → Mλ(2α, θ) of Lemma 2.4 is a partial projective
resolution. It is in fact birational, as explained in the proof of Theorem 6.13 below.
Thus, if Y → Mλ(2α, θ ′) is a projective symplectic resolution, then so is the com-
posite Y → Mλ(2α, θ), i.e., it is enough to show that we can resolve Mλ(2α, θ ′)
symplectically. Fix X =Mλ(2α, θ ′). Then X = X2 � X1 � X0, where, by Theorem
1.15, X0 is the smooth locus consisting of θ ′-stable representations, X1 parameterizes
representations M = M1 ⊕ M2 with dim M1 = dim M2 = α, M1 �� M2 are θ ′-stable
representations and X2 consists of all points M2, with dim M = α. By Proposition
3.15, X2 and X2 ∪ X1 are closed in X .

Let X̃ denote the blowup of X the along the sheaf of ideals of the reduced singular
locus X1 � X0. The corollary will follow from the following claim: X̃ → X is a
projective symplectic resolution.

Clearly, X̃ → X is a projective birational morphism, therefore we just need to show
that X̃ is smooth and the symplectic 2-form on X0 extends to a symplectic 2-form on
X̃ . We check this in a neighborhood of x ∈ X2 and of y ∈ X1. First consider x ∈ X2.
Replacing X by some affine open neighborhood of x , Theorem 3.3 says that there is
an affine Z with

Z
π

����
��
��
�� ρ

���
��

��
��

��

X X(2, 2)

where π and ρ are étale. Let X̃(2, 2) → X(2, 2), resp. Z̃ → Z , denote the blowup
along the reduced singular locus. Then

Z̃ � X̃ ×X Z � X̃(2, 2)×X(2,2) Z . (12)

As noted in [31, Remark 4.6], X̃(2, 2) → X(2, 2) is a projective symplectic resolu-
tion. Now Lemma 5.2 below and (12) imply that X̃ → X is a projective symplectic
resolution.

For y ∈ X1, Theorem 3.3 shows that there is an étale equivalence between a neigh-
borhood of y and a neighborhood of the origin in a certain quiver variety, independent
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of the choice of y ∈ X1. In particular such a neighborhood is also étale equivalent to
a neighborhood of a point of X1 inside the neighborhood of x ∈ X2 used above, so
the result follows from the previous statement. (One can also compute explicitly: the
quiver needed is the one with two vertices, one arrow in each direction between the
two vertices, and also two loops at each vertex, so the quiver variety is isomorphic to
C
8×C

2/Z2, which is an A1 singularity and hence blowing up the reduced ideal sheaf
of the singular locus gives a projective symplectic resolution).

It remains to prove the following standard lemma:

Lemma 5.2 Let X be a symplectic singularity and π : X̃ → X a proper morphism.
Then π is a symplectic resolution if and only if it is so after a surjective étale base
change i.e. being a symplectic resolution is an étale local property.

Notice thatwe are notmaking the (false) claim that X admits a symplectic resolution
if and only if it does so étale locally.

Proof Passing to the generic points of X̃ and X , the fact that a surjective étalemorphism
is faithfully flat implies thatπ is birational if and only if it is so after base change. There-
fore it suffices to check that the extension ω′ of the pullback π∗ω is non-degenerate.
If b : Z → X is a surjective étale morphism, then so too is b̃ : Z̃ = X̃ ×X Z → X̃ .
The form ω′ will be non-degenerate if and only if b̃∗ω′ is non-degenerate. ��

6 Factoriality of quiver varieties

In this section, which is the technical heart of the paper, we consider the case of a
divisible anisotropic root. Fix α ∈ 	λ,θ to be an indivisible anisotropic root, and let
n ≥ 2 such that such that (p(α), n) �= (2, 2). We prove the key result, Corollary 6.9,
which says that if θ is generic then Mλ(nα, θ) is a locally factorial variety.

6.1 Weighted partitions

A weighted partition ν of n is a sequence (
1, ν1; . . . ; 
k, νk), where ν1 ≥ ν2 ≥ · · ·
and

∑k
i=1 
iνi = n. Recall from Proposition 3.15 that the quiver variety Mλ(α, θ)

has a finite stratification by representation type. Given a weighted partition ν of n we
can associate naturally a representation type of nα:

να := (
1, ν1α; . . . ; 
k, νkα). (13)

By the last statement of Theorem 2.2, if α ∈ 	λ,θ is anisotropic, then να is indeed a
representation type for all partitions ν.

Lemma 6.1 Let α ∈ 	λ,θ be an indivisible anisotropic root. Let n ≥ 2.

(1) We have the formula

dimMλ(nα, θ)να = 2

(

k + (p(α)− 1)
k∑

i=1
ν2i

)

.
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(2) For (p(α), n) �= (2, 2), we have dimMλ(nα, θ) − dimMλ(nα, θ)να ≥ 4 for all
ν �= (1, n).

(3) For (p(α), n) �= (2, 2) and ν �= (1, n), we furthermore have

dimMλ(nα, θ)− dimMλ(nα, θ)να ≥ 8

unless one of the following holds:

(i) (p(α), n) = (2, 3) and ν = (1, 2; 1, 1); or
(ii) (p(α), n) = (3, 2) and ν = (1, 1; 1, 1).

(4) In the case that θ ·β �= 0 for all β ≤ nα not a multiple of α, all strata ofMλ(nα, θ)

are of the formMλ(nα, θ)ν , and they are parameterized by weighted partitions of
n. (It suffices to make the weaker assumption that 	λ,θ ∩ {β | β ≤ nα} ⊆ {mα |
m ≤ n}.)

Proof We begin with the first claim. Set d := p(α). Then p(nα) = n2(d − 1) + 1.
We have a finite surjective map

∏
i Mλ(νiα, θ) → Mλ(nα, θ)να , so the dimension

formula follows from Corollary 3.24.
For the second part, notice that

dimMλ(nα, θ)− dimMλ(nα, θ)ν = 2(n2(d − 1)+ 1)− 2
k∑

i=1
(ν2i (d − 1)+ 1)

= 2(d − 1)
k∑

i, j=1
(
i
i − δi, j )νiν j − 2(k − 1).

(14)

Since
∑k

i, j=1(
i
 j − δi, j )νiν j − (k − 1) ≥ 1, we clearly have dimMλ(nα, θ) −
dimMλ(nα, θ)ν ≥ 4 when d > 2. When d = 2, a simple computation shows that
dimMλ(nα, θ)− dimMλ(nα, θ)ν = 2 if and only if n = 2 and ν = (1, 1; 1, 1).

For the third part, we use again (14), noticing the following points: the RHS of (14)
is increasing in d; the RHS is increased if we replace (
i , ni ) by (
i − 1, ni ); (1, ni );
the RHS is increased if we replace (1, a) and (1, b) by (1, a + b) (when a + b < n);
and for a > b > 1, the RHS is increased if we replace (1, a) and (1, b) by (1, a + 1)
and (1, b−1). Since it suffices to prove the inequality after performing operations that
increase the RHS, the result follows once we observe that the inequality holds in the
following cases: (i) ν = (1, n − 1; 1, 1) whenever n ≥ 4 as well as (1, 1; 1, 1; 1, 1);
(ii) for ν = (1, 1; 1, 1) whenever p(α) ≥ 4, as well as ν = (2, 1) for p(α) = 3.

For the final claim, observe that each stratum ofMλ(nα, θ) consists of representa-
tions of the form x = x⊕
1

1 ⊕ · · · ⊕ x⊕
k
k , where the xi are pairwise non-isomorphic

θ -stable representations of fixed dimension vectors αi ∈ 	λ,θ . Under the assumptions
given, each αi must be a multiple of α. Therefore the representation type is of the form
να for some weighted partition ν of n. ��

Since p(α) > 1, there exist infinitely many non-isomorphic θ -stable �λ(Q)-
modules of dimension α. Therefore, for all representation types να = (
1, ν1
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α; . . . ; 
k, νkα) with
∑

i 
iνi = n, the stratum Mλ(nα, θ)να is non-empty. Let U
be the union of all strata of “type να”.

Lemma 6.2 The subset U is open inMλ(nα, θ).

Proof Since the stratum of representation type ρ = (n, α) is contained in the clo-
sure of all the other strata of type να, it suffices to show that there is no stratum
β = (e1, β(1); . . . ; el , β(l)) of any other type such that Mλ(nα, θ)ρ ⊂ Mλ(nα, θ)β .
Assume otherwise. If Gρ � GLn(C) is the stabilizer of some x ∈Mλ(nα, θ)ρ , then
the Hilbert–Mumford criterion implies that there exists some y ∈Mλ(nα, θ)β whose
stabilizer Gβ is contained in Gρ . Let Vi be the nαi -dimensional vector space at the
vertex i onwhichG(nα) acts. Then, for each g ∈ G(nα) and u ∈ C

×, the u-eigenspace
of g is the direct sum over the u-eigenspaces g|Vi . In particular, it has a well-defined
dimension vector. Now the elements g of Gρ all have the property that the dimension
vector of the u-eigenspace of g is of the form rα for some r ∈ Z≥0. On the other
hand, since β is not “of type να”, there is some i such that eiβ(i) �= rα for any r . Take
u �= 1 and g ∈ Gβ that rescales the summand of y of dimension eiβ(i) by u and is
the identity on all other summands. Then the u-eigenspace of g has dimension vector
eiβ(i) which implies that Gβ �⊂ Gρ - a contradiction. Thus, U is open. ��

Theopen subset ofμ−1(λ)θ consisting of stable representations is denotedμ−1(λ)θs ,
and its image inMλ(nα, θ) is denotedMλ(nα, θ)s . Note thatMλ(nα, θ)s is an open
subset of U , and the quotient map μ−1(λ)θs → Mλ(nα, θ)s is a principal PG(nα)-
bundle.

6.2 Factoriality ofM�(n˛,�)

A closed point x ∈ X is said to be factorial if the local ringOX ,x is a unique factoriza-
tion domain. We say that X is locally factorial if every closed point of X is factorial.
If ξ : μ−1(λ)θ →Mλ(nα, θ) is the quotient map, then let V = ξ−1(U ), where U is
the open subset of Lemma 6.2. We will need the following result from [17]:

Theorem 6.3 [17, Theorem 6.3, Corollary 6.4] Consider a stratum Z inMλ(β, θ) of
representation type (k1, β(1); . . . ; kr , β(r)). Then for all z ∈ Z, ξ−1(z) ⊆ μ−1(λ)θ

has dimension at most β · β − 1+ p(β)−∑
t p(β

(t)), so the dimension of ξ−1(Z) is
at most β · β − 1+ p(β)+∑

t p(β
(t)).

We note that in [17], this is stated and proved for λ and θ equal to zero, but the proof
and result extends verbatim to the general case, replacing simple modules by θ -stable
modules. In the case that β ∈ 	λ,θ , applying Proposition 3.28 immediately yields

Corollary 6.4 The codimension of the preimage ξ−1(Z) is at least
1
2 codim(Z) = p(β)−∑

t p(β
(t)).

Proposition 6.5 V is a local complete intersection, locally factorial and normal.

Proof Since α ∈ 	λ,θ , Proposition 3.28 implies that μ−1(λ)θ and hence V is a local
complete intersection of dimension n2α · α − 1+ 2p(nα).
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Themain step is the second assertion. For this wewill show that V is smooth outside
a subset of codimension four, i.e., it satisfies the R3 property. For any G(nα)-stable
subset X of μ−1(λ)θ , we write Xfree for the subset of all points where PG(nα) acts
freely. The assertion will follow from estimating the codimension of the complement
to Vfree in V . Note that the free locus is the same as the locus of representations whose
endomorphism algebra has dimension one, i.e., the “bricks”. We represent μ−1(λ)θ

as the union of preimages of the (finitely many) strata, and consider over each such
preimage the non-free locus.

If the preimage of the stratum has codimension at least four, it can be ignored. Thus,
we just need to show that the complement to ξ−1(Z)free has codimension at least four
for those strata Z with codim ξ−1(Z) ≤ 3. Since we are explicitly excluding the
case (p(α), n) = (2, 2), Corollary 6.4, together with Lemma 6.1 (3), imply that we
are reduced to considering the cases (p(α), n) = (2, 3) and ν = (1, 2; 1, 1), or
(p(α), n) = (3, 2) and ν = (1, 1; 1, 1).

Observe first that if Z is a stratum, then the polystable part of the preimage ξ−1(Z)

has codimension (in μ−1(λ)θ ) at least the codimension of Z itself (in Mλ(nα, θ)),
since the fiber over a polystable representation M has dimension α ·α−dim End(M),
which is maximized when M is stable. Thus if Z has codimension at least four (which
is the case for us), then we can ignore the polystable part of ξ−1(Z).

Next, if we consider a stratum Z of type (1, a; 1, b), note that every representation in
this stratum is either polystable or an indecomposable extension of twonon-isomorphic
representations. The latter type is a brick, since there is a unique stable quotient and a
unique stable subrepresentation and the two are nonisomorphic. Therefore applying the
previous paragraph together with Lemma 6.1 (2) shows that we can ignore ξ−1(Z) (the
non-free locus has overall codimension at least four). This proves the final assertion.

Since μ is regular on the locus where PG(nα) acts freely, μ−1(λ)θfree lies in the
smooth locus of V . We conclude from the last assertion of the proposition that the
singular locus of V has codimension at least 4 (i.e., property R3 holds). Since V is a
local complete intersection, and hence Cohen–Macaulay, it satisfies Serre’s condition
S2, so it is normal.

Finally, it follows from a theorem of Grothendieck, [32, Theorem 3.12], that since
V is a complete intersection and satisfies R3, the local ring OV ,x of any point x ∈ V
is a unique factorization domain. ��

The result that allows us to descend local factoriality from V to the quotient U is
the following theorem by Drezet. Since the version given in [19] concerns the moduli
space of semistable sheaves on a smooth surface, we provide full details to ensure the
arguments are applicable in our situation. Let G be a connected reductive group.

Lemma 6.6 Let V be a locally factorial normal affine G-variety and Vs ⊂ V a dense
open subset of V , whose complement has codimension at least two in V . Then every
G-equivariant line bundle on Vs extends to a G-equivariant line bundle on V .

Proof The fact that V is normal and locally factorial implies that

Pic(V ) = Div(V ) = Div (Vs) = Pic (Vs) .
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Hence if L0 is a G-equivariant line bundle on Vs , forgetting the equivariant structure,
there is an extension L toV . To show that the extension L has aG-equivariant structure,
one repeats the argument of [20, Lemme 5.2], which uses the fact that the codimension
of V � Vs is at least two. ��
Theorem 6.7 [19, Theorem A] Let V be a locally factorial, normal G-variety, with
good quotient ξ : V → U := V //G. Assume that there exists an open subset Us ⊂ U
such that

(a) the complement to Us has codimension at least two in U,
(b) Vs := ξ−1(Us)→ Us is a principal G-bundle; and
(c) the complement to Vs has codimension at least two in V .

Let x ∈ U and y ∈ T (x) a lift in V (so that G · y is closed in V ). The following are
equivalent:

(i) The local ring OU ,x is a unique factorization domain.
(ii) For every line bundle M0 on Us, there exists an open subset U0 ⊂ U containing

both x and Us such that M0 extends to a line bundle M on U0.
(iii) For every G-equivariant line bundle L on V , the stabilizer of y acts trivially on

the fiber L y.

Proof Recall that OU ,x is a unique factorization domain if and only if every height
one prime is principal. Geometrically, this means that for every hypersurface Y of U ,
the sheaf of ideals IY is free at x .

(i) implies (ii). It suffices to assume that M0 = IY , where Y is a hypersurface in
Us . If Y is the closure of Y in U , then M = IY∩U0

is the required extension.
(ii) implies (i). Let Y be a hypersurface in U . We wish to show that IY is free at x .

Let M be the extension of IY |Us to U0. The line bundle M corresponds to a Cartier
divisor D on U0; M = OU0(D). Then,

IY |Us = OUs (D ∩Us),

and the divisors Y and −D ∩ Us are linearly equivalent. Since, by assumption, the
codimension of the complement to Us in U has codimension at least two and U is
normal, Y � −D. Hence M = IY is free at x .

(ii) implies (iii). Suppose that L is a G-equivariant line bundle on V . Since G acts
freely on Vs , the restriction L|Vs descends to the line bundle M0 = (L|Vs )/G on Us .
Let M be the extension of M0 to U0. Then the G-equivariant line bundle ξ∗M agrees
with L on Vs . This implies, as in the previous paragraph, that ξ∗M = L on ξ−1(U0).
In particular, since y ∈ ξ−1(U0), the stabilizer of y acts trivially on Ly .

(iii) implies (ii). Let M0 be a line bundle on Us . By Lemma 6.6, ξ∗M0 extends to
a G-equivariant line bundle L on V . Recall by definition of lift that G · y is closed in
V . Therefore Lemma 6.8 below says that there is an affine open neighborhood U ′ of
x such that Gy′ acts trivially on Ly′ for all y′ ∈ ξ−1(U ′) such that G · y′ is closed in
V . Let U0 = U ′ ∪Us . Then, by descent [19, Theorem 1.1], there exists a line bundle
M on U0 such that ξ∗M � L . In particular, M extends M0. ��
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Let Y be a variety admitting an algebraic action of a reductive group G. Assume
that there exists a good quotient ξ : Y → X = Y//G. The following result, which says
that the descent locus of an equivariant line bundle is open, is presumably well-known,
but we were unable to find it in the literature.

Lemma 6.8 Let L be a G-equivariant line bundle on Y and y ∈ Y a closed point such
that the orbit O = G · y is closed and the stabilizer Gy of y acts trivially on the fiber
L y. Then there exists an affine open neighborhood U of ξ(y) such that the stabilizer
Gy′ acts trivially on Ly′ for all y′ ∈ ξ−1(U ) such that G · y′ is closed.
Proof The proof of the lemma can be easily deduced from the proof of [20, Theorem
2.3]. It is shown there that one can find a G-invariant section s′ : O → L|O, which
trivializes L|O. As explained in loc. cit., the fact thatO is closed in Y implies that one
can lift s′ to a G-invariant section s ∈ �(ξ−1(U ′), L), where U ′ is some affine open
neighborhood of ξ(y). Let W be the (non-empty) open subset of ξ−1(U ′) consisting
of all points y′ such that s(y′) �= 0 i.e. s trivializes L over W . Then it suffices to show
that there is some affine neighborhood U of ξ(y) such that ξ−1(U ) ⊂ W . Again,
following [20, Theorem 2.3], the sets ξ−1(U ′)�W andO are G-stable closed subsets
of ξ−1(U ′). Therefore the fact that ξ is a good quotient implies that ξ(ξ−1(U ′) � W )

and ξ(O) = {ξ(y)} are closed, disjoint subsets of U ′. Thus, there exists an affine
neighborhood U of ξ(y) such that U ∩ ξ(ξ−1(U ′) � W ) = ∅, as required. ��
Corollary 6.9 Assume that (p(α), n) �= (2, 2). Then the variety U is locally factorial.

Proof Let G = PG(α) and Us =Mλ(nα, θ)s . Proposition 6.5 implies that V is nor-
mal and locally factorial. This implies that U is normal. Moreover, by Lemma 6.1,
the codimension of the complement to Us in U has codimension at least two. Thus,
assumptions (a) and (b) of Theorem 6.7 are satisfied. By Lemma 6.1 (2) and Corol-
lary 6.4, the complement to μ−1(λ)θs in V has codimension at least 4. In particular,
assumption (c) of Theorem 6.7 is also satisfied.

Next, recall from the proof of Lemma 6.2, the stratum of type ρ = (n, α) is
contained in the closure of all other strata in U . If y is a lift in μ−1(λ)θ of a point of
Mλ(nα, θ)ρ then y corresponds to a representation M⊕n0 , where M0 ∈ Mλ(α, θ) is
a stable �λ(Q)-module. Therefore PG(nα)y = PGLn has no non-trivial characters.
In particular, PG(nα)y will act trivially on Ly for any PG(nα)-equivariant line bundle
on V . Hence, we deduce from Theorem 6.7 thatMλ(nα, θ) is factorial at every point
of Mλ(nα, θ)ρ .

Now consider an arbitrary stratumMλ(nα, θ)να in U . IfMλ(nα, θ) is factorial at
one point of the stratum then it will be factorial at every point in the stratum (for a
rigorous proof of this fact, repeat the argument given in the proof of [32, Theorem
5.3]). On the other hand, a theorem of Boissière, Gabber and Serman [22] says that
the subset of factorial points of U is an open subset. Since this open subset is a union
of strata and contains the unique closed stratum, it must be the whole of U . ��
Remark 6.10 Notice that if θ is generic then U = Mλ(nα, θ). Hence Corollary 6.9
says that Mλ(nα, θ) is a locally factorial variety. This is precisely the statement of
Theorem 1.10. In the special case where Q has a single vertex, g loops and α = e1,
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the parameters λ = θ = 0 are generic. Then M0(n, 0) is an affine cone and thus
has trivial Picard group. Corollary 6.9 implies that when (g, n) �= (2, 2),M0(n, 0) is
actually factorial. That is, C[M0(n, 0)] is a unique factorization domain.

6.3 The proof of Theorem 1.2

By Proposition 3.21, we know that Mλ(α, θ) is irreducible and normal. Therefore,
it suffices to show that it admits symplectic singularities. Since the isomorphism of
Theorem 3.17 is Poisson, it suffices to show that the varieties SniMλ(σ

(i), θ) admit
symplectic singularities. If σ (i) is real there is nothing to check.

Lemma 6.11 Let X be a smooth irreducible Poisson variety and Y a smooth symplectic
variety. If π : Y → X is a birational, surjective Poisson morphism, then it is an
isomorphism.

Proof Since the morphism is birational, there is a dense open subset U ⊂ X over
which it is an isomorphism. By [26, I, Corollary 6.12], the complement of U has
codimension at least two. On the other hand, since X is smooth, the locus where the
Poisson structure on X is degenerate has codimension one. Therefore, X is symplectic
too. This implies that dyπ is an isomorphism for all y ∈ Y . Thus, by Zariski’s Main
Theorem, π is an isomorphism. ��
Lemma 6.12 Let X be a normal irreducible Poisson variety and assume that π :
Y → X is a proper birational Poisson morphism from a variety Y with symplectic
singularities. Then X has symplectic singularities.

Observe that one can drop the assumption of the lemma that X is Poisson and π

is a Poisson morphism: since R0π∗OY = OX , Y endows X with a unique Poisson
structure making π Poisson.

Proof Let ρ : Z → Y be a resolution of singularities. If� is the symplectic 2-form on
the smooth locus of Y then ρ∗� extends to a regular form on Z . LetU = π−1(Xsm).
Then, since π : U → Xsm is proper and birational and Xsm is irreducible, π is
surjective. Lemma 6.11 implies that it is an isomorphism. In particular, there is a
symplectic 2-form ω on Xsm such that the Poisson structure on Xsm is non-degenerate
and induced from ω. Moreover, π∗ω = � . Thus, (π ◦ ρ)∗ω = ρ∗� extends to a
regular form, and hence X has symplectic singularities. ��

If σ (i) is an indivisible anisotropic root then ni = 1 by Corollary 2.3. Choos-
ing a generic stability parameter θ ′ ≥ θ defines a projective, Poisson resolution
Mλ(σ

(i), θ ′) → Mλ(σ
(i), θ) with Mλ(σ

(i), θ ′) a smooth symplectic variety; see
[17, Section 8]. Similarly, if σ (i) is isotropic imaginary then it is well-known that one
can frame the quiver so that there exists a projective, Poisson resolution of singularities
from a quiver variety that is a smooth symplectic variety. Thus, Lemma 6.12 implies
that SniMλ(σ

(i), θ) admits symplectic singularities in these two cases.
Therefore we may assume that there exists an indivisible anisotropic root β such

that α = nβ, for some n > 1. Let g = p(β). If (g, n) = (2, 2), then Theorem 1.6 and
Lemma 6.12 imply thatMλ(σ

(i), θ) has symplectic singularities. Therefore, it suffices
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to show that Mλ(σ
(i), θ) has symplectic singularities when (g, n) �= (2, 2). Again,

choose a generic stability parameter θ ′ ≥ θ . Then π : Mλ(σ
(i), θ ′) → Mλ(σ

(i), θ)

is projective and Poisson by Lemma 2.4. Moreover, since both Mλ(σ
(i), θ ′) and

Mλ(σ
(i), θ) are irreducible by Proposition 3.21, and a generic element ofMλ(σ

(i), θ)

is θ -stable, the map π is birational. (see the proof of Theorem 6.13 below for more
details). Thus, by Lemma 6.12, it suffices to show thatMλ(σ

(i), θ ′) admits symplec-
tic singularities. This follows from Flenner’s Theorem [21], once we show that the
singular locus of Mλ(σ

(i), θ ′) has codimension at least four. By Theorem 1.15, the
singular locus of Mλ(σ

(i), θ ′) is the union of all strata except the open stratum. By
Lemma 6.1 (2) each of these strata has codimension at least 4 in Mλ(σ

(i), θ ′).

6.4 The proof of Theorems 1.4, 1.5, and 1.7

We begin by considering the case of a divisible anisotropic root. Recall that α is
	-divisible if α = mβ for some β ∈ 	λ,θ and m ≥ 2.

Recall that a normal variety X with Q-Cartier canonical divisor KX is said to have
terminal singularities if KY = f ∗(KX ) +∑

i ai Ei with ai > 0, where f : Y → X
is any resolution of singularities, and the sum is over all exceptional divisors of f .

Theorem 6.13 Let α ∈ 	λ,θ be a divisible anisotropic root which is not of the form
α = 2β for p(β) = 2.

Then the symplectic singularity Mλ(α, θ) does not admit a projective symplectic
resolution. If, moreover, α is 	-divisible, then it does not admit a proper symplectic
resolution.

Proof Write α = nβ for n ≥ 2. First suppose that β ∈ 	λ,θ . If Mλ(nβ, θ) admits
a proper symplectic resolution then so too by restriction does the open subset U of
Lemma 6.2. Recall from Theorem 1.15 that the singular locus ofU is the complement
of the open stratum. The singular locus is also nonempty since the stratum (n, β) is
nonempty. ByLemma 6.1, it has codimension at least four inU . Therefore, sinceU has
symplectic singularities by Theorem 1.2, [50] says that U has terminal singularities.
This implies that if f : Y → U is a proper symplectic resolution then the exceptional
locus of f has codimension at least two in Y . On the other hand, we have shown in
Corollary 6.9 that U is locally factorial. This implies by van der Waerden purity, see
[18, Section 1.40], that the exceptional locus of f is a divisor. This is a contradiction.

Finally suppose that β /∈ 	λ,θ . Since it is indivisible, it is clear that for generic θ ′,
we have β ∈ 	λ,θ ′ . It follows from the previous paragraph that Mλ(α, θ ′) does not
admit a proper symplectic resolution, hence not a projective symplectic resolution.

We claim that, for generic θ ′ > θ ,Mλ(α, θ ′)→Mλ(α, θ) is a projective birational
Poisson morphism. For generic θ ′, note that every θ -stable representation is also θ ′-
stable: this is because we can assume that for β < α such that θ · β < 0, we also
have θ ′ · β < 0. Now, since every θ ′-semistable representation is also θ -semistable,
and the θ -stable representations are dense in the θ -semistable ones (by Corollary
3.22), it follows that the θ -stable locus is dense in Mλ(α, θ ′). Since stable orbits in
μ−1(λ) are closed, in this case the locus of θ -stable representations inMλ(α, θ ′)maps
isomorphically onto the stable locus inMλ(α, θ). The latter being dense as well, and
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stability being an open condition, we conclude that the map Mλ(α, θ ′)→Mλ(α, θ)

is birational. The other conditions follow from Lemma 2.4.
Now, suppose that Mλ(α, θ) admitted a projective symplectic resolution. If λ =

θ = 0, then Mλ(α, θ) is conical. By [6, Theorem 2.2] (which is based on [52]), it
would then follow that Mλ(α, θ ′) also admitted a projective symplectic resolution,
which is a contradiction.

For the general case, if Mλ(α, θ) admitted a projective symplectic resolution, it
would also do so étale-locally. By first decomposing β into elements of 	λ,θ , we
could find a representation type τ = (ne1, β(1); . . . ; nek, β(k)) for α with coeffi-
cients multiples of n. Then, the étale-local quiver (Q′, α′) at this stratum would have
n | gcd(α′). Moreover, the anisotropic root α′ belongs to	0,0, as the generic represen-
tation remains stable (one can also prove this directly). It would follow thatM0(α

′, 0)
admits a projective resolution, contradicting the previous paragraph. ��
The proof also shows,more generally, that any singular open subset ofU in Lemma 6.2
(in the 	-divisible case) does not admit a symplectic resolution. If θ is generic, then
U =Mλ(nα, θ). This implies Corollary 1.11 (as well as the stronger result discussed
afterwards).

Corollary 6.14 Let α ∈ 	λ,θ be indivisible and n ≥ 1. Then Mλ(nα, θ) admits a
projective symplectic resolution if one of the following conditions hold:

(o) α is a real root (p(α) = 0);
(i) n = 1;
(ii) p(α) = 1; or
(iii) (n, p(α)) = (2, 2).

If none of these conditions hold, then Mλ(nα, θ) does not admit a proper symplectic
resolution. In particular, existence of projective and proper symplectic resolutions is
equivalent for Mλ(nα, θ).

Proof In case (o), Mλ(nα, θ) is a point, so there is nothing to show. In case (i), let
D be the open subset of {θ ′ ∈ Q

Q0 | θ ′(α) = 0} consisting of all stability conditions
vanishing onα, but not on any otherβ < αwithβ ∈ 	λ,θ . Sinceα is indivisible, the set
D is non-empty. Its closure is thewhole space, thus there exists a connected component
C such that θ ∈ C . Choose θ ′ ∈ C (rescaling if necessary, we may assume that θ ′ ∈
Z
Q0 ). Then, just as shown in [17, Section 8], the morphism Mλ(α, θ ′)→Mλ(α, θ)

is a projective symplectic resolution. For case (ii), first note that case (i) implies
that X := Mλ(α, θ ′) → Mλ(α, θ) is a projective symplectic resolution of (du Val)
singularities for some θ ′ ≥ θ . In particular, X is a smooth symplectic surface. Next,
Mλ(nα, θ) ∼= SnMλ(α, θ) by Theorem 3.16 because the canonical decomposition of
nα is α + · · · + α. We therefore obtain a partial resolution Sn X →Mλ(nα, θ). Now
recall that the natural mapHilbn Mλ(α, θ ′)→ SnMλ(α, θ ′) is a projective symplectic
resolution; see [47, Theorem 1.8, Theorem 1.10]. Finally in case (iii) the resolution
is given in Theorem 1.6. If none of the conditions hold, then α is an anisotropic root
and the non-existence of a proper symplectic resolution is a consequence of Theorem
6.13. ��
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We now proceed to the proof of Theorem 1.4. The isomorphism of Theorem 1.4
follows directly from Theorem 3.17. Therefore, it suffices to show that Mλ(α, θ)

admits a projective symplectic resolution if and only if each Mλ(σ
(i), θ) admits a

projective symplectic resolution.
First note that if σ (i) is a real root or an isotropic root, then σ (i) is indivisible (for

the latter property, a divisible isotropic root is not in 	λ,θ ). In these cases, as recalled
in Corollary 6.14, SniMλ(σ

(i), θ) admits a projective symplectic resolution, as does
Mλ(σ

(i), θ).
On the other hand, if σ (i) is an anisotropic root, then ni = 1, by Corollary 2.3.

Moreover, by Corollary 6.14, Mλ(σ
(i), θ) admits a projective symplectic resolution

if σ (i) is indivisible or if σ (i) is twice a root β ∈ 	λ,θ satisfying p(β) = 2, and
otherwise it does not.

Therefore, if Mλ(σ
(i), θ) admits a projective symplectic resolution for all i , it

follows that each SniMλ(σ
(i), θ) admits a projective symplectic resolution, and hence

so does Mλ(α, θ).
If, on the other hand, some Mλ(σ

(i), θ) did not admit a projective symplectic
resolution, then Corollary 6.14 implies that σ (i) is a divisible anisotropic root which is
not twice a root β ∈ 	λ,θ satisfying p(β) = 2. In this case, by the proof of Theorem
6.13, étale-locally Mλ(σ

(i), θ) is a cone which admits a partial projective Poisson
resolutionMλ(σ

(i), θ ′) which itself is terminal, locally factorial, and singular. Taking
products with the other factors, we see that étale-locallyMλ(α, θ) is itself a cone with
a partial crepant resolution by a terminal, locally factorial, and singular variety. Such
a variety does not admit a symplectic resolution, as explained in the proof of Theorem
6.13. By [6, Theorem 2.2], Mλ(α, θ) itself does not admit a projective symplectic
resolution. This completes the proof.

Notice that Theorems 1.5 and 1.7 also follow from the above argument.

6.5 Formal resolutions

Let α be a divisible anisotropic root, and assume that α is not of the form α = 2β
with p(β) = 2. Though it might not be obvious from Corollary 1.11, the nature of the
obstructions to the existence of a symplectic resolution of Mλ(α, θ) is quite subtle.
We have shown that Zariski locally no resolution exists. But then one can ask if a
resolution exists étale locally, or in the formal neighborhood of a point? In this section
we give a precise answer to this question.

Definition 6.15 The closed point x ∈ Mλ(α, θ) is said to be formally resolvable if
the formal neighborhood M̂λ(α, θ)x of x inMλ(α, θ) admits a projective symplectic
resolution.

Lemma 6.16 If 0 ∈ M0(α, 0) is formally resolvable, then M0(α, 0) also admits a
projective symplectic resolution, and conversely.

Proof LetC× act onRep(Q, α) by dilations. Then themomentmapμ is homogeneous
of degree two and the action ofG(α) commuteswith the action ofC×. This implies that
C[Mλ(α, θ)] is an N-graded, connected algebra. Note also that the Poisson bracket on
C[Mλ(α, θ)] has degree −2. The lemma follows from standard arguments; see [24,
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Proposition 5.2], [29, Theorem 1.4], and the references therein. The idea is that: 1) The
induced action of C

× on M̂0(α, 0)0 lifts to the resolution. 2) The C
×-action allows

one to globalize the resolution of the formal neighborhood of 0 to a resolution of the
whole ofM0(α, 0). For the converse statement, we restrict a symplectic resolution of
M0(α, 0) to the formal neighborhood of zero. ��

By Corollary 3.4, if one point in a stratum Mλ(α, θ)τ ⊂ Mλ(α, θ) is for-
mally resolvable, then so too is every other point in the stratum. If τ =
(e1, β(1); . . . ; ek, β(k)), then define the greatest common divisor gcd(τ ) of τ to be
the greatest common divisor of the ei . If the greatest common divisor of τ is k, then
each point inMλ(α, θ)τ corresponds to a representation of the form Y⊕k for some θ -
polystable representation Y . LetUfr ⊂Mλ(α, θ) be the union of all strataMλ(α, θ)τ
such that gcd(τ ) = 1.

Lemma 6.17 Let α ∈ 	λ,θ . Then Ufr is a dense open subset of Mλ(α, θ).

Proof The set Ufr is dense because it contains the open stratum Mλ(α, θ)(1,α), con-
sisting of stable representations. We will show that the complement toUfr is closed in
Mλ(α, θ). It suffices to show that if the greatest commondivisor ofρ is greater than one
andMλ(α, θ)τ ⊂Mλ(α, θ)ρ thengcd(τ ) > 1 too.The argument is similar to the proof
of Lemma 6.2. Let x ∈Mλ(α, θ)ρ and Gρ ⊂ G(α) its stabilizer. By Proposition 3.15,
there exists x ′ ∈Mλ(α, θ)τ such that its stabilizer Gτ contains Gρ . Let gcd(ρ) = k,
so that x corresponds to a representation Y ⊗ V for some θ -polystable representation
Y , and k-dimensional vector space V . Notice that α = k dim Y . Then GL(V ) is a sub-
group of Gρ , and hence of Gτ too. An elementary argument shows that this implies
that x ′ corresponds to a representation Y ′ ⊗ V for some θ -polystable representation
Y ′. Thus, gcd(τ ) > 1. In fact, we have shown that if Mλ(α, θ)τ ⊂ Mλ(α, θ)ρ , then
gcd(ρ) divides gcd(τ ). Thus, Ufr is open inMλ(α, θ). ��
Theorem 6.18 Let α ∈ 	λ,θ be an anisotropic root, α = nβ for some indivisible
root β and some n > 1. Assume that (n, p(β)) �= (2, 2). Then a point x is formally
resolvable if and only if x ∈ Ufr.

Proof Let x ∈Mλ(α, θ) have representation type τ = (e1, β(1); . . . ; ek, β(k)), where
m := gcd(τ ). By Corollary 3.4, M̂λ(α, θ)x � M̂0(e, 0)0 and hence Lemma 6.16 says
that x is formally resolvable if and only if M0(e, 0) admits a projective symplectic
resolution. By definition, the greatest common divisor of e is m. Proposition 4.2 says
that e belongs to 	0,0 for the quiver underlying M0(e, 0). Moreover, by remark 3.5,
we have p(α) = p(e) which implies that e = mf with both e and f anisotropic. If
m = 1 then Corollary 6.14 (i) implies that x is formally resolvable. Thus, we just need
to show that if m > 1 then x is not formally resolvable.

First, we show:

(m, p(f)) = (2, 2) ⇔ (n, p (β)) = (2, 2). (15)

Assume that the left hand side of (15) holds. Then p(α) = n2(p(β)− 1)+ 1 implies
that

n2(p(β)− 1)+ 1 = p(α) = p(e) = 5
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and hence n2(p(β) − 1) = 4. But p(β) > 1 since β is anisotropic, and 2 divides n.
Thus, n = 2 and p(β) = 2. Conversely, assume that the right hand side of (15) holds.
Then 5 = p(α) = p(e) implies that m2(p(f)− 1) = 4. Since f is anisotropic and we
have assumed that m > 1, we deduce that (m, p(f)) = (2, 2).

Notice that we have assumed in the statement of the theorem that (n, p (β)) �=
(2, 2). Thus, (m, p(f)) cannot equal (2, 2). Then Theorem 6.13 says that M0(e, 0)
does not admit a projective symplectic resolution because m > 1. ��

In the case where α ∈ 	λ,θ equals 2β for some root β ∈ 	λ,θ with p(β) = 2, every
point in Mλ(α, θ) is formally resolvable. Similarly, if α is indivisible (or a multiple
of an isotropic root), then every point inMλ(α, θ) is formally resolvable.

Remark 6.19 IfUfr � Mλ(α, θ) thenCorollary 1.11 implies that any open subset ofUfr
not contained in the smooth locus ofMλ(α, θ) does not admit a symplectic resolution,
i.e. the singular locus of Ufr consists of points that cannot be resolved Zariski locally,
but do admit a resolution in a formal neighborhood (in fact étale locally).

7 Namikawa’s Weyl group

In the paper [51], Namikawa defined a finite group W associated to any conic affine
symplectic singularity X such that the symplectic form on X has weight 
 > 0 with
respect to the torus action. The groupW acts as a reflection group on H2(Y , R), where
Y → X is any Q-factorial terminalization of X , whose existence is guaranteed by the
minimal model program. The group W plays a key role in the birational geometry of
X ; see [53] and [3].

One computes W as follows: let L be a codimension 2 leaf of X and x ∈ L. Then
the formal neighborhood of x in X is isomorphic to the formal neighborhood of 0
in C

2(n−1) × C
2/�, where 2n = dim X and � ⊂ SL2(C) is a finite group; see [52,

Lemma 1.3]. Associated to �, via the McKay correspondence, is a Weyl groupWL of
type A, D or E . The fundamental groupπ1(L) acts onWL viaDynkin automorphisms.
Let W ′L denote the centralizer of π1(L) in WL. Then

W :=
∏

L
W ′L.

Thus, in order to compute W , it is essential to classify the codimension 2 leaves of X ,
and describe π1(L). This is the goal of this section.

7.1 The proof of Theorem 1.20

We assume throughout that α ∈ 	λ,θ , hence it is a root. Therefore the support of α on
the quiver is connected. We can assume, up to replacing the quiver by the subquiver
whose vertices are the support of α, and whose arrows are the ones with endpoints in
the support, that α is sincere. Then, the quiver is connected. We may assume that α is
imaginary, otherwise the statement is vacuous.
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Our goal is to compute the codimension two leaves ofMλ(α, θ), proving Theorem
1.20. Recall from Definition 1.18 that α = β(1)+ · · · + β(s)+m1γ

(1)+ · · ·mtγ
(t) is

an isotropic decomposition if

(a) β(i), γ ( j) ∈ 	λ,θ .
(b) The β(i) are imaginary roots.
(c) The γ (i) are pairwise distinct real roots.
(d) If Q

′′
is the quiver with s + t vertices without loops and −(α(i), α( j)) arrows

from vertex i to vertex j �= i , where α(i), α( j) ∈ {β(1), . . . , β(s), γ (1), . . . , γ (t)},
then Q′′ is an affine Dynkin quiver.

(e) The dimension vector (1, . . . , 1,m1, . . . ,mt ) of Q′′ (where there are s ones)
equals δ, the minimal imaginary root.

To prove this, first let us consider a general stratum τ of Mλ(α, θ),

τ =
(
n1, β

(1); . . . ; ns, β(s);m1, γ
(1); . . . ;mt , γ

(t)
)

,

β(i) are imaginary, and γ (i)are real. (16)

Since there is only one θ -stable representation of dimension equal to each real root in
	λ,θ , it follows that the γ (i) are all distinct.

Let us now setα(i) := β(i) for 1 ≤ i ≤ s andα(i) = γ (i−s) for s+1 ≤ i ≤ s+t . Let
ki := ni for 1 ≤ i ≤ s and ki = mi−s for s+1 ≤ i ≤ s+ t ; let k = (k1, . . . , ks+t ). By
Theorem 3.3, at a point of this stratum, Mλ(α, θ) is étale-equivalent to MQ′(0,k)0,

where the notation means we use the quiver Q′ instead of Q. Recall that Q
′
is the

quiver with s + t vertices, 2p(α(i)) loops at the i th vertex and −(α(i), α( j)) arrows
between i and j .

Note that Q′′ is obtained from Q′ by discarding all loops at vertices. We will
prove that, in the case that the stratum has codimension two,MQ′′(0,k)0 étale-locally
describes a transverse slice to the stratum.

Lemma 7.1 Suppose that τ is as in (16) and moreover ni = 1 for all i .
Then at every point of the stratum there is an étale-local transverse slice isomorphic

to a neighborhood of zero inMQ′′(0, k).

Proof A neighborhood of a point of the stratum is étale-equivalent to a neighborhood
of zero in MQ′′(0,k). Inside the latter, the stratum containing zero consists of the
representations which are a direct sum of simple representations, one at each vertex.
At the vertices 1, . . . , s, this representation has dimension one; at the other vertices
there are no loops and hence the simple representations are the standard ones. The
stratum has dimension 2

∑s
i=1 p(β(i)), where p(β(i)) equals the number of loops at

the vertex i . A transverse slice is thus given by the representations which assign zero
to all of the loops, which obviously identifies withMQ′′(0,k). ��
Lemma 7.2 Suppose that τ has codimension two. Then ni = 1 for all i .

Moreover, the anisotropic β(i) are pairwise distinct.
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Proof The codimension two condition can be written as:

1 = p(α)−
∑

i

p
(
β(i)

)
−

∑

i

p
(
γ (i)

)
= p(α)−

∑

i

p
(
β(i)

)
, (17)

since dimMλ(α, θ)τ = 2
∑

i p
(
β(i)

)+ 2
∑

i p
(
γ (i)

)
. Note that the niβ(i) are them-

selves imaginary roots. Let Iani ⊆ I := {1, . . . , s} be the set of indices such that β(i)

is anisotropic, and let Iiso := I \ Iani; so p(β(i)) = 1 if and only if i ∈ Iiso. Note the
identity

p(mα) = m2(p(α)− 1)+ 1.

Since α ∈ 	λ,θ ,

p(α) ≥
∑

i∈Iani
p

(
niβ

(i)
)
+

∑

i∈Iiso
ni p

(
β(i)

)
+

∑

i

p
(
γ (i)

)

=
∑

i∈Iani
(n2i p

(
β(i)

)
+ (1− n2i ))+

∑

i∈Iiso
ni ,

with equality holding only if s = 1 and β(1) is anisotropic. Therefore, the RHS of (17)
is greater than or equal to

∑

i∈Iani
(n2i − 1)(p

(
β(i)

)
− 1)+

∑

i∈Iiso
(ni − 1),

again with equality only if s = 1 and β(1) is anisotropic. Therefore, if ni > 1 for any
i , then the RHS of (17) is strictly greater than one, a contradiction.

To see that the anisotropic β(i) are all distinct, suppose not. Group the ones that are
not distinct together: let I ′ be the index set so that β(i), i ∈ I gives all of the distinct
roots once each, and let 
i := |{ j : β j = β ′i }|. Then, we obtain the inequality

p(α)−
∑

i

p
(
β(i)

)
≥ p(α)−

∑

i∈I ′

i p

(
β(i)

)
>

∑

i∈I
(
2i − 
i )(p

(
β(i)

)
− 1),

which is greater than one if any 
i > 1 with i ∈ Iani.
Thus ni = 1 for all i and the anisotropic β(i) are pairwise distinct. ��
We can now proceed with the proof of the theorem:

Proof of Theorem 1.20 Consider a general stratum τ as in (16). By Lemmas 7.1 and
7.2, we know that τ has codimension two if and only if ni = 1 for all i and
dimMQ′′(0,k) = 2. The latter is certainly true if τ is given by an isotropic decompo-
sition. Moreover, in this case MQ′′(0,k) is a du Val singularity of type given by the
quiver Q′′.
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It remains only to show that, if τ has codimension two, then Q′′ is affine Dynkin
(ADE), with k the minimal imaginary root. Consider the canonical decomposition of
k, say k = k(1)+· · ·+k(r). ThenMQ′′(0,k) ∼=∏r

i=1MQ′′(0,k(i)). The dimension of
the latter is 2

∑r
i=1 p(k(i)). Hence exactly one of the k(i) is isotropic, i.e., p(k(i0)) = 1

for some i0, and the others are real, i.e., p(k(i)) = 0 for i �= i0. Let k′ := k(i0). Since
k′ ∈ 	0,0(Q′′), it follows that it is the minimal imaginary root of some affine Dynkin
subquiver of Q′′ (by the argument of the proof of [16, Proposition 1.2.(2)]).

We claim that k = k′. Given this, since every component of k is nonzero, Q′′ is
indeed affine Dynkin, which completes the proof.

To prove the claim, write k′ = (k′1, . . . , k′s+t ) with k′i ≤ ki for all i . Let α′ :=
∑s+t

i=1 k′iα(i). Then Lemmas 7.1 and 7.2 applied to α′ show also that the stratum τ ′
corresponding to k′ inMλ(α

′, θ) has codimension two. That is:

2
∑

i :k′i �=0
p(α(i)) = dimMλ(α

′, θ)− 2. (18)

By Lemma 7.3 below, the RHS of (18) is at most 2p(α′) − 2. Now adding∑
i :k′i=0 p(α

(i)) to both sides, we obtain:

∑

i

p(α(i)) ≤ p(α′)+
∑

i :k′i=0
p(α(i))− 1. (19)

The LHS of (19) equals p(α)− 1 by assumption. Therefore we obtain:

p(α) ≤ p(α′)+
∑

i :k′i=0
p(α(i)). (20)

Now, replace α′ and each of the α(i) in the RHS of (20) by their canonical decom-
positions and let η1, . . . , ηq be the resulting elements of 	λ,θ with multiplicity. By
Lemma 7.3 again, we obtain that p(α) ≤∑q

i=1 p(ηi ). Since α ∈ 	λ,θ , this can only
happen if q = 1, i.e., α = α′ = η1. This is true if and only if k = k′. ��
Lemma 7.3 Suppose α ∈ NR+λ,θ has canonical decomposition α = ∑

i niσ
(i) with

respect to λ and θ . Then p(α) ≤∑
i ni p(σ

(i)).

Proof Let λ′ be such that R+
λ′ = R+λ,θ . As α ∈ NR+λ,θ = NR+

λ′ , we know thatμ−1α (λ′) is
nonempty. The latter is a fiber of a map

⊕
a∈Q1

Hom(Cαt(a) , C
αh(a) )→ pg(α), where

pg(α) is the Lie algebra of PG(α). All of the irreducible components of the latter must
have dimension at least

∑
a∈Q1

αt(a)αh(a) −∑
i∈Q0

α2
i + 1 = α · α − 2〈α, α〉 + 1 =

α · α + 2p(α)− 1.
On the other hand, by [15, Theorem 4.4], dimμ−1α (λ′) = α · α − 〈α, α〉 + m =

α ·α+ p(α)+ (m− 1) where m is the maximum value of
∑

i p(α
(i)) with α(i) ∈ R+

λ′
and α =∑

α(i); as remarked at the top of page 3 in [16], we have m =∑
i ni p(σ

(i))

(it is a direct consequence of [16, Theorem 1.1] which we discussed before Theorem
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3.17).1 We conclude that α · α + p(α) + (m − 1) ≥ α · α + 2p(α) − 1. Therefore,
m ≥ p(α), as desired.

��
Remark 7.4 The lemma can be strengthened to prove: for any decomposition α =∑

j α
( j) with α( j) ∈ NR+λ,θ , we have

∑
j p(α

( j)) ≤ ∑
i ni p(σ

(i)). This generalizes

an observation on [16, p. 3] (dealing with the case where the α( j) are roots). To prove
this, for arbitrary α( j), we can apply the lemma to each of the α( j), and then we get
that

∑
j p(α

( j)) ≤ ∑
j p(β

( j)) for some roots β( j) ∈ R+λ,θ with α = β( j); then we

are back in the case of roots so that
∑

j ni p(σ
(i)) ≥∑

j p(β
( j)).

Remark 7.5 The arguments of [15,16] can be generalized to the context of the pair
(λ, θ), which as we pointed out in Sect. 2.3 would eliminate the need of picking a λ′
as in the proof of the lemma above.
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